scholarly journals Performance Test on Styrene-Butadiene-Styrene (SBS) Modified Asphalt Based on the Different Evaluation Methods

2019 ◽  
Vol 9 (3) ◽  
pp. 467 ◽  
Author(s):  
Chen Zhang ◽  
Hainian Wang ◽  
Zhanping You ◽  
Junfeng Gao ◽  
Muhammad Irfan

To uniform the evaluation indicators of Styrene-Butadiene-Styrene (SBS) modified asphalt, the SK70# and SK90# matrix asphalt were modified by different SBS modifier dosage in this study. The test methods in China and Superpave were used to test the performance of each SBS-modified asphalt respectively, from which the appropriate evaluation index of SBS-modified asphalt was determined. The results showed that the addition of SBS modifier improved the high temperature performance and lowered the temperature sensitivity of asphalt binder, while it increased the viscosity of asphalt binder in high temperatures. Due to the variability that appeared in the results of the penetration test by the swelling of SBS-modified asphalt, the penetration test was not recommended to evaluate the performances of SBS-modified asphalt. The softening point of SBS-modified asphalt with the modifier dosages of 4.5%, 5%, 5.5% and 6% increased 5.7%, 12.8%, 22.5% and 26.4% respectively compared to the matrix asphalt for SK70# matrix asphalt, and increased 21.2%, 26.3%, 33.6% and 46.6% respectively compared to the matrix asphalt for SK90# matrix asphalt. The effect of SBS-modifier on the softening point of SK90# matrix asphalt is significantly better than that of SK70# matrix asphalt. The improvement effect of SBS modifier on low temperature performance of matrix asphalt decreased with a decrease in test temperature. When studying the influence of the SBS modifier on the low temperature performance of asphalt binder, it was recommended to use the bending beam rheometer (BBR) test to evaluate the low temperature performance of SBS-modified asphalt.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Haitao Zhang ◽  
Ying Wang ◽  
Zuoqiang Liu ◽  
Quansheng Sun

Although the aging asphalt and its regeneration were researched by many researchers, the poor low-temperature performance of regenerating asphalt has still not been solved yet. In this project, the composite technology of regeneration and modification will be used to solve the problem mentioned above. Through the investigation and analysis on the composite mechanism of regeneration and modification for aging asphalt, the objective of the project attempts to explore a method for the synchronized recovery of high- and low-temperature performance of aging asphalt. The research results show that the single regenerating technology cannot fully recover the low-temperature performance of aging asphalt, and the composite technology of regeneration and modification can make the performance of aging asphalt recovery well. The indexes of aging asphalt after composite regeneration and modification have been recovered, which are better than the indexes of 90# asphalt (25°C penetration is 80–100/0.1 mm) and close with the indexes of styrene-butadiene-styrene (SBS) modified asphalt. The project has demonstrated that the composite technology of regeneration and modification can make the high- and low-temperature performance of aging asphalt recovery well. The research results can obtain better economic and social benefits.


2013 ◽  
Vol 753-755 ◽  
pp. 715-718
Author(s):  
Xiu Hua Yang

SBS is a styrene - butadiene - styrene block copolymer, the addition of SBS of high and low temperature performance and road can be very good to improve the performance of asphalt. This paper studied the performance of the modified asphalt on the content of modifier.


2013 ◽  
Vol 753-755 ◽  
pp. 734-740 ◽  
Author(s):  
Li Wan ◽  
Shao Peng Wu ◽  
Min Lei ◽  
Kim Jenkins

Currently, rejuvenator seal which is one of the preventive maintenance methods is more widely used due to its economic benefits and convenience. This paper described the chemical and rheological evaluation of the aged styrene butadiene styrene modified asphalt (ASMA) treated by two rejuvenator sealer materials (RSMs). First the ASMA was rejuvenated by mixing with the RSMs. Then the ASMA and two rejuvenated binders were re-aged by 10h PAV test. At last, the new binder, ASMA, rejuvenated ASMAs, re-aged binders were tested by Dynamic shear rheometer (DSR) and Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the first aging of the new binder had a significant decrease of the low temperature performance and slight improvement of the high temperature performance. In addition, the high temperature performance increased obviously after 10h PAV test. Two RSMs could significantly soften the aged binder due to increase of maltene content existing in the RSMs, and the rejuvenated binder exhibited a better low performance after the 10h PAV test. However they cannot restore the low temperature completely because that RSMs cannot remedy the degradation of SBS modifier and remove the carbonyl produced in the aging progress.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 771
Author(s):  
Yu Sun ◽  
Dongpo He

The mixture of styreneic methyl copolymers (SMCs) normal temperature-modified asphalt and styrene-butadiene styrene block copolymer (SBS)-modified asphalt (SMCSBS) compound-modified asphalt was investigated in this study. The viscosity and temperature properties of compound modified asphalt (SMCSBS) were studied by Brookfield rotary viscosity test. Dynamic shear rheometer (DSR) and bending beam rheometer (BBR) were used to test SMCSBS compound modified asphalt with different SMC additions. Finally, the microstructure and physicochemical properties of SMCSBS were evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the modification mechanism of the SMCSBS was studied. The results show that the viscosity of the compound-modified asphalt added with SMC is improved, which is conducive to improving its workability. With the increase of SMC content, the high-temperature performance of the compound modified asphalt firstly increases and then decreases with the increase of SMC content. When the content of SMC is 12%, its high-temperature performance is the best. Compared with SBS-modified asphalt, the SMCSBS has better low-temperature performance, and the creep stiffness S and creep rate m of the SMC with different content are better than that of SBS. Finally, the microcosmic characteristics show that the SMC can give full play to its characteristics and can be uniformly dispersed in SBS modified asphalt. SMC is essentially a surfactant, which can reduce the viscosity and construction temperature by changing the surface tension and surface free energy of asphalt molecules. The curing agent of epoxy resin is slowly cross-linked and cured after contacting with air to form a certain strength, thus improving the road performance of the asphalt mixture.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


2013 ◽  
Vol 438-439 ◽  
pp. 369-372
Author(s):  
Ning Li Li ◽  
Xin Po Zhao ◽  
Cai Li Zhang ◽  
Hu Hui Li ◽  
Qing Yi Xiao

During the service of asphalt pavement, the aging makes asphalt binder become brittle, gradually lose flexibility and adhesion. All these result in the low-temperature properties of asphalt pavement to be poor. This paper conducts the rolling thin film oven test (RTFOT) and pressure aging vessel (PAV) test on base asphalt and rubber-modified asphalt respectively. The bending beam rheometer (BBR) test was conducted on original asphalts, rolling thin film oven test (RTFOT) residuals and RTFOT + pressure aging vessel (PAV) residuals of base asphalt and rubber-modified asphalt respectively. Results indicate that the low-temperature properties of all aged asphalts were declined. The attenuation of low-temperature properties of RTFOT + PAV residuals is larger than that of the RTFOT residuals. The attenuation of different types of asphalt is different. From the overall trend, effect of aging on the low-temperature properties of asphalt binder reduced as the test temperature reduction. The rubber-modified asphalt has superior low-temperature performance than that of base asphalt, and its low-temperature performance decreases more slowly than the base asphalt.


2019 ◽  
Vol 145 (3) ◽  
pp. 04019022 ◽  
Author(s):  
Mohammad Ali Notani ◽  
Fereidoon Moghadas Nejad ◽  
Ellie H. Fini ◽  
Pouria Hajikarimi

2010 ◽  
Vol 152-153 ◽  
pp. 288-294 ◽  
Author(s):  
Wei Dong Cao ◽  
Shu Tang Liu ◽  
Hong Lu Mao

Polyphosphric acid (PPA) modified asphalt binders were produced in the laboratory using one base asphalt and four levels of PPA contents (0.6%, 1.0%, 1.5% and 2.0% by weight of base asphalt). Penetration test, softening point test, rotation viscosity test, creep test with bending beam rheometer (BBR) and four components test were carried out to study the performance of PPA modified asphalt binders and possible modification mechanism. The results indicate that the high-temperature performance of PPA modified asphalt binders are obviously improved and temperature susceptibility are decreased, but the low-temperature performance slightly decline compared with base asphalt. The PPA content has a very significant effect on softening point whereas it has no significant influence on low-temperature performance according to variance analysis (ANOVA). Finally, four components test reveals that the primary modification mechanism of PPA is the change of chemical composition of asphalt binder.


Sign in / Sign up

Export Citation Format

Share Document