scholarly journals Size-Dependent Free Vibrations of FG Polymer Composite Curved Nanobeams Reinforced with Graphene Nanoplatelets Resting on Pasternak Foundations

2019 ◽  
Vol 9 (8) ◽  
pp. 1580 ◽  
Author(s):  
Mohammad Arefi ◽  
Elyas Mohammad-Rezaei Bidgoli ◽  
Rossana Dimitri ◽  
Francesco Tornabene ◽  
J. N. Reddy

This paper presents a free vibration analysis of functionally graded (FG) polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on a Pasternak foundation. The size-dependent governing equations of motion are derived by applying the Hamilton’s principle and the differential law consequent (but not equivalent) to Eringen’s strain-driven nonlocal integral elasticity model equipped with the special bi-exponential averaging kernel. The displacement field of the problem is here described in polar coordinates, according to the first order shear deformation theory. A large parametric investigation is performed, which includes different FG patterns, different boundary conditions, but also different geometrical parameters, number of layers, weight fractions, and Pasternak parameters.

2019 ◽  
Vol 25 ◽  
pp. 69-83 ◽  
Author(s):  
Slimane Merdaci

This article presents the free vibration analysis of simply supported plate FG porous using a high order shear deformation theory. In is work the material properties of the porous plate FG vary across the thickness. The proposed theory contains four unknowns unlike the other theories which contain five unknowns. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the plate are simply supported the Navier procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature for non-porous plates. Effects of the exponent graded and porosity factors are investigated.


2017 ◽  
Vol 29 (5) ◽  
pp. 774-786 ◽  
Author(s):  
M Arefi ◽  
MH Zamani ◽  
M Kiani

This work is devoted to the free vibration nonlocal analysis of an elastic three-layered nanoplate with exponentially graded graphene sheet core and piezomagnetic face-sheets. The rectangular elastic three-layered nanoplate is resting on Pasternak’s foundation. Material properties of the core are supposed to vary along the thickness direction based on the exponential function. The governing equations of motion are derived from Hamilton’s principle based on first-order shear deformation theory. In addition, Eringen’s nonlocal piezo-magneto-elasticity theory is used to consider size effects. The analytical solution is presented to solve seven governing equations of motion using Navier’s solution. Eventually, the natural frequency is scrutinized for different side length ratio, nonlocal parameter, inhomogeneity parameter, and parameters of foundation numerically. The comparison with various references is performed for validation of our analytical results.


2018 ◽  
Vol 81 ◽  
pp. 108-117 ◽  
Author(s):  
Mohammad Arefi ◽  
Elyas Mohammad-Rezaei Bidgoli ◽  
Rossana Dimitri ◽  
Francesco Tornabene

Author(s):  
A. Cutolo ◽  
V. Mallardo ◽  
M. Fraldi ◽  
E. Ruocco

Abstract The focus of the present work is to present an analytical approach for buckling and free vibrations analysis of thick functionally graded nanoplates embedded in a Winkler-Pasternak medium. The equations of motion are derived according to both the third-order shear deformation theory, proposed by Reddy, and the nonlocal elasticity Eringen's model. For the first time, the equations are solved analytically for plates with two simply supported opposite edges, the solutions also turning helpful as shape functions in the analysis of structures with more complex geometries and boundary conditions. Sensitivity analyses are finally performed to highlight the role of nonlocal parameters, aspect and side-to-thickness ratios, boundary conditions, and functionally graded material properties in the overall response of plates and cylindrical shells. It is felt that the proposed strategy could be usefully adopted as benchmark solutions in numerical routines as well as for predicting some unexpected behaviors, for instance, in terms of buckling load, in thick nanoplates on elastic foundations.


Author(s):  
Jie Chen ◽  
Pai Cui ◽  
Qiu-Sheng Li

In this paper, free vibrations of functionally graded (FG) graphene-reinforced composite blades with varying cross-sections are investigated. Considering the cantilever boundary conditions, the dynamic model of a rotating blade is simplified as a varying cross-sections plate with pre-installed angle and pre-twisted angle. As a reinforcement, the graphene platelets (GPLs) are distributed either uniformly or gradiently on the plate along its thickness direction. The effective Young’s modulus is formulated by the modified Halpin–Tsai model. The rule of mixture is applied to calculate the effective Poisson’s ratio and mass density. The equations of motion are established by using the first-order shear deformation theory and von Karman geometric nonlinear theory. Based on the Rayleigh–Ritz method, the natural frequencies of the rotating FG blade reinforced with the GPLs are obtained. The accuracy of the present method is verified by comparing the obtained results with those of the finite element method and published literature. A comprehensive parametric study is conducted, with a particular focus on the effects of distribution pattern, weight fraction, and geometries size of the GPLs together with dimensional parameters of varying cross-sections blade on the dynamics of the FG blades reinforced with the GPLs.


Author(s):  
Behrouz Karami ◽  
Davood Shahsavari ◽  
Li Li ◽  
Moein Karami ◽  
Maziar Janghorban

The effective elastic-piezoelectric properties of nanostructures have been shown to be strongly size-dependent. In this paper, a nonlocal second-order shear deformation formulation is presented to study the size-dependent thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core. Temperature is considered as uniform and nonlinear distributions across plate’s thickness direction. Based on the developed nonlocal second-order shear deformation theory, the size-dependent equations of motion are derived. The nonlocal thermal buckling responses of simply supported nanoplates are solved via Navier method. The reliability of present approach is verified by comparing the existing results provided in the open literature. The influences of nonlocal parameter, gradient index, electric voltage, and Winkler–Pasternak parameters on the thermal buckling characteristics of functionally graded nanoplates are examined.


2021 ◽  
pp. 107754632110004
Author(s):  
Hassan Afshari ◽  
Hossein Amirabadi

In this article, a comprehensive study is conducted on the free vibration analysis of rotating truncated conical shells reinforced with functionally graded agglomerated carbon nanotubes The shell is modeled based on the first-order shear deformation theory, and effective mechanical properties are calculated based on the Eshelby–Mori–Tanaka scheme along with the rule of mixture. By considering centrifugal and Coriolis accelerations and initial hoop tension, the set of governing equations is derived using Hamilton’s principle and is solved numerically using the differential quadrature method Convergence and accuracy of the presented model are confirmed and the effects of different parameters on the forward and backward frequencies of the rotating carbon nanotube-reinforced truncated conical shells are investigated.


Author(s):  
V Kumar ◽  
SJ Singh ◽  
VH Saran ◽  
SP Harsha

The present paper investigates the free vibration analysis for functionally graded material plates of linearly varying thickness. A non-polynomial higher order shear deformation theory is used, which is based on inverse hyperbolic shape function for the tapered FGM plate. Three different types of material gradation laws, specifically: a power (P-FGM), exponential (E-FGM), and sigmoid law (S-FGM) are used to calculate the property variation in the thickness direction of FGM plate. The variational principle has been applied to derive the governing differential equation for the plates. Non-dimensional frequencies have been evaluated by considering the semi-analytical approach viz. Galerkin-Vlasov’s method. The accuracy of the preceding formulation has been validated through numerical examples consisting of constant thickness and tapered (variable thickness) plates. The findings obtained by this method are found to be in close agreement with the published results. Parametric studies are then explored for different geometric parameters like taper ratio and boundary conditions. It is deduced that the frequency parameter is maximum for S-FGM tapered plate as compared to E- and P-FGM tapered plate. Consequently, it is concluded that the S-FGM tapered plate is suitable for those engineering structures that are subjected to huge excitations to avoid resonance conditions. In addition, it is found that the taper ratio is significantly affected by the type of constraints on the edges of the tapered FGM plate. Some novel results for FGM plate with variable thickness are also computed that can be used as benchmark results for future reference.


Sign in / Sign up

Export Citation Format

Share Document