scholarly journals In-Situ Observation of Adhesion Behavior During Ultrasonic Al Ribbon Bonding

2019 ◽  
Vol 9 (9) ◽  
pp. 1835 ◽  
Author(s):  
Yasuo Takahashi ◽  
Kazumasa Takashima ◽  
Kouta Misawa ◽  
Yusuke Takaoka

In-situ observation was performed on a transparent silica substrate during ultrasonic Al ribbon bonding, using a high-speed video camera with differing frame rates, 104 fps and 103 fps, to clarify the adhesion behavior. The bonding process was observed as follows. Initially, friction slip occurred, producing multiple island streaks in the direction parallel to the ultrasonic vibration. The island streaks were formed as a scratch, due to surface waviness of the Al ribbon. Momentarily, a belt-shaped bond zone was formed at the center, normally due to the ultrasonic vibration. The island streaks could be clearly observed at 104 fps. However, the central belt zone was unclear and appeared translucent at 104 fps; although it was clear when observed at 103 fps. The island streaks were unclear at 103 fps. The positional relation of the island streaks and the central belt zone was confirmed from in-situ observation results of a twist and peel test of Al ribbon bonded to silica substrate. The central belt zone was between the island streaks and the silica substrate.

2014 ◽  
Vol 782 ◽  
pp. 3-7
Author(s):  
Kenji Shinozaki ◽  
Motomichi Yamamoto ◽  
Kohta Kadoi ◽  
Peng Wen

Solidification cracking during welding is very serious problem for practical use. Therefore, there are so many reports concerning solidification cracking. Normally, solidification cracking susceptibility of material is quantitatively evaluated using Trans-Varestraint test. On the other hand, local solidification cracking strain was tried to measure precisely using in-situ observation method, called MISO method about 30 years ago. Recently, digital high-speed video camera develops very fast and its image quality is very high. Therefore, we have started to observe solidification crack using in site observation method. In this paper, the local critical strain of a solidification crack was measured and the high temperature ductility curves of weld metals having different dilution ratios and different grain sizes to evaluate quantitatively the effects of dilution ratio and grain size on solidification cracking susceptibility by using an improved in situ observation method.


2017 ◽  
Vol 103 (12) ◽  
pp. 763-770
Author(s):  
Hisao Esaka ◽  
Seiichiro Tsubone ◽  
Hiroyuki Miyata ◽  
Daiki Watanabe ◽  
Hiroshi Kaneko ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 8804
Author(s):  
Jhonni Rahman ◽  
Yutaka Shoukaku ◽  
Tomoaki Iwai

This study examines the relationship between rubber-wheel and the contact area on the road surface. Ultraviolet-induced fluorescence microscopy was used to observe and measure the contact parts with pyranine as a dye solution. The high sensitivity to U.V. light makes it easy to distinguish contact and non-contact regions on a very small scale. The experiment was conducted in static and dynamic conditions to identify its influence on the apparent contact area of rubber-wheel and road surface. The in-situ observation of the contact area was captured and recorded using a high-speed digital camera with 1-inch a CMOS (complementary metal oxide semiconductor) sensor. Additionally, the contact area between rubber-wheel and road surface was measured using an analyzing software. The results show differences in static and dynamic contact conditions based on the operating parameters.


Author(s):  
Akira Shimamoto ◽  
Ryo Kubota ◽  
Sung-mo Yang ◽  
Dae-kue Choi ◽  
Weiping Jia

An experimental study of high pressure water jet peening treatment on chromium steal SCr420 H3V2L2 is conducted to study the effects of cavitation impacts of high-speed water on fatigue crack initiation and propagation of notched specimens. There are six different kinds of specimens. First three kinds are treated with; only annealing, only water quenching, and only oil quenching. Other three kinds are treated with above heat treatment and water jet peening, respectively. An axial tensile fatigue tests’ condition is 260MPa maximum stress amplitude, 0 stress ratio and 10Hz frequency, while in-situ observation by SEM is employed. Although fatigue life of the specimens with annealing and water jet peening is shorter than that of only annealing, fatigue life of water and oil quenching with water jet peening specimens is obviously longer than those without water jet peening treatment. Water jet peening has increased residual stress inside the specimens on the latter case and raised their fatigue strength. In-situ observation on the crack tips approves above analysis.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 917 ◽  
Author(s):  
Shimizu ◽  
Kobayashi ◽  
Vorholt ◽  
Yang

: To investigate the underlying mechanism of the effects of surface texturing on lubricated sliding friction in the metal forming operation, an in-situ observation system using transparent silica glass dies and a high speed recording camera was newly developed. To correlate the dimensional parameters of micro-dimple textured structures and tribological properties in the metal forming operation, the in-situ observation was performed during bending with the ironing process of the stainless steel sheet with a thickness of 0.1 mm. The lubrication behavior were compared between the different lubricant viscosities and the micro-dimple textures with different diameters of 10 µm, 50 µm, 100 µm fabricated by using femto-/pico-second laser processing. As a result, the textured die with dimple diameters of 10 µm and 50 µm showed the lubricant flow transferred from one to the other dimples owing to the lubricant reservoir effect, while that of 100 µm indicated the less supply of the lubricant. However, the textured die with a dimple diameter of 10 µm demonstrated higher ironing force than that of 50 µm, due to the severe adhesion of work materials inside the dimple structures. Based on these experimental findings, the dimple size dependencies on lubricant reservoirs effects and the generation of the hydrodynamic pressure were discussed by correlating with the in-situ observation results, a fluid-flow analysis and a laminar two-phase flow analysis using the finite element method.


2000 ◽  
Vol 633 ◽  
Author(s):  
Shinzo Suzuki ◽  
Rahul Sen ◽  
Hirofumi Yamaguchi ◽  
Toshinobu Ishigaki ◽  
Yohsuke Ohtsuka ◽  
...  

AbstractThe temporal and spatial evolution of emitting carbon nanoparticles were investigated using a laser furnace apparatus combined with a high-speed video camera. An apparent increase in the blackbody emission intensity at Δt > 400 [.proportional]sec after laser vaporization of a graphite rod was clearly recognized. Also, it was found that this increasing tendency corresponds well to that of the fullerene yield, where fullerene species was obtained as sublimed carbon material using in situ sublimation method. These findings suggest that a certain exothermic process related to the formation of C60, other higher fullerenes, and carbon nanotubes should occur at Δt > 400 νsec inside the furnace.


2008 ◽  
Vol 94 (11) ◽  
pp. 532-538 ◽  
Author(s):  
Kazumi Mizukami ◽  
Masaaki Sugiyama ◽  
Masaharu Tsuji

2019 ◽  
Vol 302 ◽  
pp. 422-427 ◽  
Author(s):  
Taiki Yoshioka ◽  
Hisayoshi Matsushima ◽  
Mikito Ueda

Sign in / Sign up

Export Citation Format

Share Document