scholarly journals DFT Characteristics of Charge Transport in DBTP-Based Hole Transport Materials

2019 ◽  
Vol 9 (11) ◽  
pp. 2244 ◽  
Author(s):  
Ming Qiu ◽  
Weiwei Pei ◽  
Qiuchen Lu ◽  
Zhuo Li ◽  
Yuanzuo Li ◽  
...  

To improve the hole-transport ability and photoelectric properties of perovskite solar cells, the ground-state geometry, frontier molecular orbital, and mobility of two organic molecules were investigated using density functional theory (DFT) with the Marcus hopping model. The absorption spectra were calculated using time-dependent DFT. The result indicated that the increase in the conjugated chain and change in the substituted group location from meta to para cause low mobility, which has a negative effect on the hole-transporting ability.

ChemPhysChem ◽  
2018 ◽  
Vol 19 (22) ◽  
pp. 3018-3023 ◽  
Author(s):  
Sri Kasi Matta ◽  
Chunmei Zhang ◽  
Anthony P. O'Mullane ◽  
Aijun Du

2018 ◽  
Vol 8 (9) ◽  
pp. 1461 ◽  
Author(s):  
Qian Liu ◽  
Xiaochen Lin ◽  
Xinlan Cao ◽  
Peng Song ◽  
Fengcai Ma ◽  
...  

Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells.


2022 ◽  
Author(s):  
nambury surendra babu ◽  
Irene Octavian Riwa

Abstract The current study examined a series of 1,3,5-tris (diphenylamino) benzene derivatives used as hole transport materials in perovskite solar cells (HTM1-HTM9). DFT and TD/DFT with the B3LYP/6-311G basis set used for all calculations. The ground state geometry, frontier molecular orbital (FMO), photoelectric properties and reorganization energies and the absorption spectra were investigated. The energy levels of HOMO and LUMO orbitals were calculated for HTM1-HTM9, compared to all of the compounds under investigation and the spiro-OMeTAD, HTM 8 has the lowest HOMO energy level, indicating a favourable overlap with the MAPbI3 perovskite active layer.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5569
Author(s):  
Mateusz Korzec ◽  
Daiva Tavgeniene ◽  
Nizy Sara Samuel ◽  
Raminta Beresneviciute ◽  
Gintare Krucaite ◽  
...  

Novel oxetane-functionalized derivatives were synthesized to find the impact of carbazole substituents, such as 1-naphtyl, 9-ethylcarbazole and 4-(diphenylamino)phenyl, on their thermal, photophysical and electrochemical properties. Additionally, to obtain the optimized ground-state geometry and distribution of the frontier molecular orbital energy levels, density functional theory (DFT) calculations were used. Thermal investigations showed that the obtained compounds are highly thermally stable up to 360 °C, as molecular glasses with glass transition temperatures in the range of 142–165 °C. UV–Vis and photoluminescence studies were performed in solvents of differing in polarity, in the solid state as a thin film on glass substrate, and in powders, and were supported by DFT calculations. They emitted radiation both in solution and in film with photoluminescence quantum yield from 4% to 87%. Cyclic voltammetry measurements revealed that the materials undergo an oxidation process. Next, the synthesized molecules were tested as hole transporting materials (HTM) in perovskite solar cells with the structure FTO/b-TiO2/m-TiO2/perovskite/HTM/Au, and photovoltaic parameters were compared with the reference device without the oxetane derivatives.


2021 ◽  
Author(s):  
Marie-Hélène Tremblay ◽  
Kelly Schutt ◽  
Yadong Zhang ◽  
Stephen Barlow ◽  
Henry J. Snaith ◽  
...  

Half-devices made with a norbornene homopolymer with hole-transporting 2,7-bis(di-p-anisylamino)fluorene side chains exhibit improved light and heat stability in comparison to those incorporating spiro-OMeTAD.


2009 ◽  
Vol 62 (2) ◽  
pp. 157 ◽  
Author(s):  
Rong-Xiu Zhu ◽  
Ruo-Xi Wang ◽  
Dong-Ju Zhang ◽  
Cheng-Bu Liu

The thiourea-catalyzed methanolysis of d-lactide, a model system for the initiation and propagation of the organocatalyzed ring-opening polymerization (ROP) of lactide, has been studied by performing density functional theory calculations. Both the catalyzed and uncatalyzed reactions are explored along two possible pathways: one involves the stepwise addition–elimination pathway and the other is related to the concerted pathway. It is found that the reaction without the presence of the catalyst is difficult because the barrier involved is as high as 176 kJ mol–1. With the aid of a thiourea catalyst, the barrier is reduced to 88 kJ mol–1 with a preference for the stepwise addition–elimination mechanism over the concerted one. The role of the catalyst has been rationalized by analyzing the frontier molecular orbital interactions between the catalyst and substrates and by performing natural population analysis. Finally, another mechanism involving acyl transfer is discussed for the thiourea-catalyzed ROP.


2019 ◽  
Vol 9 (12) ◽  
pp. 2567 ◽  
Author(s):  
Dongpeng Zhao ◽  
Qiuchen Lu ◽  
Runzhou Su ◽  
Yuanzuo Li ◽  
Meiyu Zhao

The photovoltaic properties of two dyes (quercitin (Q) and rutin (R)) were experimentally investigated. The results showed that Q had excellent photoelectric properties with J s c of 5.480 mA·cm−2, V o c of 0.582 V, η of 2.151% larger than R with J s c of 1.826 mA·cm−2, V o c of 0.547 V, and η of 0.713%. For a better understanding of the photoelectric properties of two molecules and illustrating why the performances of Q is better than R from the micro-level, the UV-VIs spectrum, Fourier transforms infrared (FT-IR) spectrum, and cyclic voltage current characteristics were experimentally investigated. What is more, density functional theory (DFT) and time dependent density functional theory (TD-DFT) have been implemented in theoretical calculation. Based on the calculated results, frontier molecular orbitals (FMOs), charge differential density (CDD), infrared vibration, first hyperpolarizability, projected density orbital analysis (PDOS), electrostatic potential (ESP), and natural bond orbital (NBO) were analyzed. Hole/electron reorganization energies ( λ h / λ e ), light harvesting efficiency (LHE), fluorescent lifetime (τ), absorption peak, and the vertical dipole moment ( μ n o r m a l ) were calculated, and the shift of conduction band edge of a semiconductor (ΔECB) has been analyzed, which has a close relationship with J s c and V o c . The results demonstrated that, due to the higher LHE, τ, μ n o r m a l , and red-shifted absorption peak, Q has better photoelectric properties than R as a promising sensitizer.


2019 ◽  
Vol 43 (24) ◽  
pp. 9453-9457 ◽  
Author(s):  
Diwen Liu ◽  
Huijuan Jing ◽  
Rongjian Sa ◽  
Kechen Wu

To reduce the toxicity of Pb in perovskite solar cells, the structural stabilities, and electronic and optical properties of the mixed perovskites MAPb0.75B0.25I3(B = Mg, Ca, Sr, and Ba) were predicted using density functional theory.


Nanoscale ◽  
2019 ◽  
Vol 11 (41) ◽  
pp. 19586-19594 ◽  
Author(s):  
Hannah Kwon ◽  
Ju Won Lim ◽  
Jinyoung Han ◽  
Li Na Quan ◽  
Dawoon Kim ◽  
...  

Designing an efficient and stable hole transport layer (HTL) material is one of the essential ways to improve the performance of organic–inorganic perovskite solar cells (PSCs).


Sign in / Sign up

Export Citation Format

Share Document