scholarly journals Identifying Foreign Tourists’ Nationality from Mobility Traces via LSTM Neural Network and Location Embeddings

2019 ◽  
Vol 9 (14) ◽  
pp. 2861 ◽  
Author(s):  
Alessandro Crivellari ◽  
Euro Beinat

The interest in human mobility analysis has increased with the rapid growth of positioning technology and motion tracking, leading to a variety of studies based on trajectory recordings. Mapping the routes that people commonly perform was revealed to be very useful for location-based service applications, where individual mobility behaviors can potentially disclose meaningful information about each customer and be fruitfully used for personalized recommendation systems. This paper tackles a novel trajectory labeling problem related to the context of user profiling in “smart” tourism, inferring the nationality of individual users on the basis of their motion trajectories. In particular, we use large-scale motion traces of short-term foreign visitors as a way of detecting the nationality of individuals. This task is not trivial, relying on the hypothesis that foreign tourists of different nationalities may not only visit different locations, but also move in a different way between the same locations. The problem is defined as a multinomial classification with a few tens of classes (nationalities) and sparse location-based trajectory data. We hereby propose a machine learning-based methodology, consisting of a long short-term memory (LSTM) neural network trained on vector representations of locations, in order to capture the underlying semantics of user mobility patterns. Experiments conducted on a real-world big dataset demonstrate that our method achieves considerably higher performances than baseline and traditional approaches.

Author(s):  
Yanjie Dong ◽  
John Polak ◽  
Aruna Sivakumar ◽  
Fangce Guo

With the growing popularity of mobile and sensory devices, there has been a strong research interest in short-term disaggregate-level location prediction. Such predictive models have huge application potential in several sectors to change and improve people’s daily life and experience. Existing methods in this research stream have mainly focused on the prediction of sequence of location, with valuable temporal information overlooked. In addition, data limitations have constrained the development and understanding from different algorithms. In this paper, the authors propose a recurrent neural network-based method (RNN and LSTM, long short-term memory) for the next and future location prediction. This model predicts the sequence in time, thus it can predict both when and where an individual will be in the future and the duration of the stay at each location. The predictive model is developed based on an agent-based simulation platform that can produce realistic spatial-temporal trajectory data at the individual level. Analysis of the simulated data has shown that RNN and LSTM are capable of predicting future locations with better results than other comparative methods, especially for agents with high location variability. Online prediction with true location information fed into the model later in the day would greatly improve the predicted results. However, significant variations can be observed at the zonal level, with all methods performing much better on frequently visited locations than less visited locations or irregular visits.


Author(s):  
Qiang Gao ◽  
Fan Zhou ◽  
Kunpeng Zhang ◽  
Goce Trajcevski ◽  
Xucheng Luo ◽  
...  

Understanding human trajectory patterns is an important task in many location based social networks (LBSNs) applications, such as personalized recommendation and preference-based route planning. Most of the existing methods classify a trajectory (or its segments) based on spatio-temporal values and activities, into some predefined categories, e.g., walking or jogging. We tackle a novel trajectory classification problem: we identify and link trajectories to users who generate them in the LBSNs, a problem called Trajectory-User Linking (TUL). Solving the TUL problem is not a trivial task because: (1) the number of the classes (i.e., users) is much larger than the number of motion patterns in the common trajectory classification problems; and (2) the location based trajectory data, especially the check-ins, are often extremely sparse. To address these challenges, a Recurrent Neural Networks (RNN) based semi-supervised learning model, called TULER (TUL via Embedding and RNN) is proposed, which exploits the spatio-temporal data to capture the underlying semantics of user mobility patterns. Experiments conducted on real-world datasets demonstrate that TULER achieves better accuracy than the existing methods.


Author(s):  
Ida Nurhaida ◽  
Handrie Noprisson ◽  
Vina Ayumi ◽  
Hong Wei ◽  
Erwin Dwika Putra ◽  
...  

The studies of human mobility prediction in mobile computing area gained due to the availability of large-scale dataset contained history of location trajectory. Previous work has been proposed many solutions for increasing of human mobility prediction result accuration, however, only few researchers have addressed the issue of<em> </em>human mobility for implementation of LSTM networks. This study attempted to use classical methodologies by combining LSTM and DBSCAN because those algorithms can tackle problem in human mobility, including large-scale sequential data modeling and number of clusters of arbitrary trajectory identification. The method of research consists of DBSCAN for clustering, long short-term memory (LSTM) algorithm for modelling and prediction, and Root Mean Square Error (RMSE) for evaluation. As the result,<em> </em>the prediction error or RMSE value reached score 3.551 by setting LSTM with parameter of <em>epoch</em> and <em>batch_size</em> is 100 and 20 respectively.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1923 ◽  
Author(s):  
Hang Li ◽  
Xiu-Jun Gong ◽  
Hua Yu ◽  
Chang Zhou

Machine learning based predictions of protein–protein interactions (PPIs) could provide valuable insights into protein functions, disease occurrence, and therapy design on a large scale. The intensive feature engineering in most of these methods makes the prediction task more tedious and trivial. The emerging deep learning technology enabling automatic feature engineering is gaining great success in various fields. However, the over-fitting and generalization of its models are not yet well investigated in most scenarios. Here, we present a deep neural network framework (DNN-PPI) for predicting PPIs using features learned automatically only from protein primary sequences. Within the framework, the sequences of two interacting proteins are sequentially fed into the encoding, embedding, convolution neural network (CNN), and long short-term memory (LSTM) neural network layers. Then, a concatenated vector of the two outputs from the previous layer is wired as the input of the fully connected neural network. Finally, the Adam optimizer is applied to learn the network weights in a back-propagation fashion. The different types of features, including semantic associations between amino acids, position-related sequence segments (motif), and their long- and short-term dependencies, are captured in the embedding, CNN and LSTM layers, respectively. When the model was trained on Pan’s human PPI dataset, it achieved a prediction accuracy of 98.78% at the Matthew’s correlation coefficient (MCC) of 97.57%. The prediction accuracies for six external datasets ranged from 92.80% to 97.89%, making them superior to those achieved with previous methods. When performed on Escherichia coli, Drosophila, and Caenorhabditis elegans datasets, DNN-PPI obtained prediction accuracies of 95.949%, 98.389%, and 98.669%, respectively. The performances in cross-species testing among the four species above coincided in their evolutionary distances. However, when testing Mus Musculus using the models from those species, they all obtained prediction accuracies of over 92.43%, which is difficult to achieve and worthy of note for further study. These results suggest that DNN-PPI has remarkable generalization and is a promising tool for identifying protein interactions.


2020 ◽  
Vol 12 (1) ◽  
pp. 349 ◽  
Author(s):  
Alessandro Crivellari ◽  
Euro Beinat

The increasing availability of trajectory recordings has led to the mining of a massive amount of historical track data, allowing for a better understanding of travel behaviors by revealing meaningful motion patterns. In the context of human mobility analysis, the problem of motion prediction assumes a central role and is beneficial for a wide range of applications, including for touristic purposes, such as personalized services or targeted recommendations, and sustainability studies related to crowd management and resource redistribution. This paper tackles a particular case of the trajectory prediction problem, focusing on large-scale mobility traces of short-term foreign tourists. These sparse trajectories, short and non-repetitive, lack spatial and temporal regularity, making prediction analysis based on individual historical motion data unreliable. To face this issue, we hereby propose a deep learning-based approach, taking into account the collective mobility of tourists over the territory. The underlying semantics of motion patterns are captured by means of a long short-term memory (LSTM) neural network model trained on pre-processed location sequences, aiming to predict the next visited place in the trajectory. We tested the methodology on a real-world big dataset, demonstrating its higher feasibility with respect to traditional approaches.


2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sign in / Sign up

Export Citation Format

Share Document