scholarly journals Lexicon-Enhanced Attention Network Based on Text Representation for Sentiment Classification

2019 ◽  
Vol 9 (18) ◽  
pp. 3717 ◽  
Author(s):  
Wenkuan Li ◽  
Dongyuan Li ◽  
Hongxia Yin ◽  
Lindong Zhang ◽  
Zhenfang Zhu ◽  
...  

Text representation learning is an important but challenging issue for various natural language processing tasks. Recently, deep learning-based representation models have achieved great success for sentiment classification. However, these existing models focus on more semantic information rather than sentiment linguistic knowledge, which provides rich sentiment information and plays a key role in sentiment analysis. In this paper, we propose a lexicon-enhanced attention network (LAN) based on text representation to improve the performance of sentiment classification. Specifically, we first propose a lexicon-enhanced attention mechanism by combining the sentiment lexicon with an attention mechanism to incorporate sentiment linguistic knowledge into deep learning methods. Second, we introduce a multi-head attention mechanism in the deep neural network to interactively capture the contextual information from different representation subspaces at different positions. Furthermore, we stack a LAN model to build a hierarchical sentiment classification model for large-scale text. Extensive experiments are conducted to evaluate the effectiveness of the proposed models on four popular real-world sentiment classification datasets at both the sentence level and the document level. The experimental results demonstrate that our proposed models can achieve comparable or better performance than the state-of-the-art methods.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247984
Author(s):  
Xuyang Wang ◽  
Yixuan Tong

With the rapid development of the mobile internet, people are becoming more dependent on the internet to express their comments on products or stores; meanwhile, text sentiment classification of these comments has become a research hotspot. In existing methods, it is fairly popular to apply a deep learning method to the text classification task. Aiming at solving information loss, weak context and other problems, this paper makes an improvement based on the transformer model to reduce the difficulty of model training and training time cost and achieve higher overall model recall and accuracy in text sentiment classification. The transformer model replaces the traditional convolutional neural network (CNN) and the recurrent neural network (RNN) and is fully based on the attention mechanism; therefore, the transformer model effectively improves the training speed and reduces training difficulty. This paper selects e-commerce reviews as research objects and applies deep learning theory. First, the text is preprocessed by word vectorization. Then the IN standardized method and the GELUs activation function are applied based on the original model to analyze the emotional tendencies of online users towards stores or products. The experimental results show that our method improves by 9.71%, 6.05%, 5.58% and 5.12% in terms of recall and approaches the peak level of the F1 value in the test model by comparing BiLSTM, Naive Bayesian Model, the serial BiLSTM_CNN model and BiLSTM with an attention mechanism model. Therefore, this finding proves that our method can be used to improve the text sentiment classification accuracy and effectively apply the method to text classification.


2019 ◽  
Vol 11 (4) ◽  
pp. 96 ◽  
Author(s):  
Li ◽  
Liu ◽  
Zhang ◽  
Liu

Text sentiment analysis is an important but challenging task. Remarkable success has been achieved along with the wide application of deep learning methods, but deep learning methods dealing with text sentiment classification tasks cannot fully exploit sentiment linguistic knowledge, which hinders the development of text sentiment analysis. In this paper, we propose a sentiment-feature-enhanced deep neural network (SDNN) to address the problem by integrating sentiment linguistic knowledge into a deep neural network via a sentiment attention mechanism. Specifically, first we introduce a novel sentiment attention mechanism to help select the crucial sentiment-word-relevant context words by leveraging the sentiment lexicon in an attention mechanism, which bridges the gap between traditional sentiment linguistic knowledge and current popular deep learning methods. Second, we develop an improved deep neural network to extract sequential correlation information and text local features by combining bidirectional gated recurrent units with a convolutional neural network, which further enhances the ability of comprehensive text representation learning. With this design, the SDNN model can generate a powerful semantic representation of text to improve the performance of text sentiment classification tasks. Extensive experiments were conducted to evaluate the effectiveness of the proposed SDNN model on two real-world datasets with a binary-sentiment-label and a multi-sentiment-label. The experimental results demonstrated that the SDNN achieved substantially better performance than the strong competitors for text sentiment classification tasks.


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2929 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chao Wang ◽  
Hong Zhang

With the capability to automatically learn discriminative features, deep learning has experienced great success in natural images but has rarely been explored for ship classification in high-resolution SAR images due to the training bottleneck caused by the small datasets. In this paper, convolutional neural networks (CNNs) are applied to ship classification by using SAR images with the small datasets. First, ship chips are constructed from high-resolution SAR images and split into training and validation datasets. Second, a ship classification model is constructed based on very deep convolutional networks (VGG). Then, VGG is pretrained via ImageNet, and fine tuning is utilized to train our model. Six scenes of COSMO-SkyMed images are used to evaluate our proposed model with regard to the classification accuracy. The experimental results reveal that (1) our proposed ship classification model trained by fine tuning achieves more than 95% average classification accuracy, even with 5-cross validation; (2) compared with other models, the ship classification model based on VGG16 achieves at least 2% higher accuracies for classification. These experimental results reveal the effectiveness of our proposed method.


2020 ◽  
Vol 34 (05) ◽  
pp. 9636-9643
Author(s):  
Zhuosheng Zhang ◽  
Yuwei Wu ◽  
Junru Zhou ◽  
Sufeng Duan ◽  
Hai Zhao ◽  
...  

For machine reading comprehension, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy passages and getting ride of the noises is essential to improve its performance. Traditional attentive models attend to all words without explicit constraint, which results in inaccurate concentration on some dispensable words. In this work, we propose using syntax to guide the text modeling by incorporating explicit syntactic constraints into attention mechanism for better linguistically motivated word representations. In detail, for self-attention network (SAN) sponsored Transformer-based encoder, we introduce syntactic dependency of interest (SDOI) design into the SAN to form an SDOI-SAN with syntax-guided self-attention. Syntax-guided network (SG-Net) is then composed of this extra SDOI-SAN and the SAN from the original Transformer encoder through a dual contextual architecture for better linguistics inspired representation. To verify its effectiveness, the proposed SG-Net is applied to typical pre-trained language model BERT which is right based on a Transformer encoder. Extensive experiments on popular benchmarks including SQuAD 2.0 and RACE show that the proposed SG-Net design helps achieve substantial performance improvement over strong baselines.


2020 ◽  
Vol 39 (4) ◽  
pp. 4935-4945
Author(s):  
Qiuyun Cheng ◽  
Yun Ke ◽  
Ahmed Abdelmouty

Aiming at the limitation of using only word features in traditional deep learning sentiment classification, this paper combines topic features with deep learning models to build a topic-fused deep learning sentiment classification model. The model can fuse topic features to obtain high-quality high-level text features. Experiments show that in binary sentiment classification, the highest classification accuracy of the model can reach more than 90%, which is higher than that of commonly used deep learning models. This paper focuses on the combination of deep neural networks and emerging text processing technologies, and improves and perfects them from two aspects of model architecture and training methods, and designs an efficient deep network sentiment analysis model. A CNN (Convolutional Neural Network) model based on polymorphism is proposed. The model constructs the CNN input matrix by combining the word vector information of the text, the emotion information of the words, and the position information of the words, and adjusts the importance of different feature information in the training process by means of weight control. The multi-objective sample data set is used to verify the effectiveness of the proposed model in the sentiment analysis task of related objects from the classification effect and training performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaodi Wang ◽  
Xiaoliang Chen ◽  
Mingwei Tang ◽  
Tian Yang ◽  
Zhen Wang

The aim of aspect-level sentiment analysis is to identify the sentiment polarity of a given target term in sentences. Existing neural network models provide a useful account of how to judge the polarity. However, context relative position information for the target terms is adversely ignored under the limitation of training datasets. Considering position features between words into the models can improve the accuracy of sentiment classification. Hence, this study proposes an improved classification model by combining multilevel interactive bidirectional Gated Recurrent Unit (GRU), attention mechanisms, and position features (MI-biGRU). Firstly, the position features of words in a sentence are initialized to enrich word embedding. Secondly, the approach extracts the features of target terms and context by using a well-constructed multilevel interactive bidirectional neural network. Thirdly, an attention mechanism is introduced so that the model can pay greater attention to those words that are important for sentiment analysis. Finally, four classic sentiment classification datasets are used to deal with aspect-level tasks. Experimental results indicate that there is a correlation between the multilevel interactive attention network and the position features. MI-biGRU can obviously improve the performance of classification.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiajie Jiang ◽  
Hui Li ◽  
Zhiwei Mao ◽  
Fengchun Liu ◽  
Jinjie Zhang ◽  
...  

AbstractCondition monitoring and fault diagnosis of diesel engines are of great significance for safety production and maintenance cost control. The digital twin method based on data-driven and physical model fusion has attracted more and more attention. However, the existing methods lack deeper integration and optimization facing complex physical systems. Most of the algorithms based on deep learning transform the data into the substitution of the physical model. The lack of interpretability of the deep learning diagnosis model limits its practical application. The attention mechanism is gradually developed to access interpretability. In this study, a digital twin auxiliary approach based on adaptive sparse attention network for diesel engine fault diagnosis is proposed with considering its signal characteristics of strong angle domain correlation and transient non-stationary, in which a new soft threshold filter is designed to draw more attention to multi decentralized local fault information dynamically in real time. Based on this attention mechanism, the distribution of fault information in the original signal can be better visualized to help explain the fault mechanism. The valve failure experiment on a diesel engine test rig is conducted, of which the results show that the proposed adaptive sparse attention mechanism model has better training efficiency and clearer interpretability on the premise of maintaining performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Mingyong Li ◽  
Ziye An ◽  
Qinmin Wei ◽  
Kaiyue Xiang ◽  
Yan Ma

In recent years, with the explosion of multimedia data from search engines, social media, and e-commerce platforms, there is an urgent need for fast retrieval methods for massive big data. Hashing is widely used in large-scale and high-dimensional data search because of its low storage cost and fast query speed. Thanks to the great success of deep learning in many fields, the deep learning method has been introduced into hashing retrieval, and it uses a deep neural network to learn image features and hash codes simultaneously. Compared with the traditional hashing methods, it has better performance. However, existing deep hashing methods have some limitations; for example, most methods consider only one kind of supervised loss, which leads to insufficient utilization of supervised information. To address this issue, we proposed a triplet deep hashing method with joint supervised loss based on the convolutional neural network (JLTDH) in this work. The proposed method JLTDH combines triplet likelihood loss and linear classification loss; moreover, the triplet supervised label is adopted, which contains richer supervised information than that of the pointwise and pairwise labels. At the same time, in order to overcome the cubic increase in the number of triplets and make triplet training more effective, we adopt a novel triplet selection method. The whole process is divided into two stages: In the first stage, taking the triplets generated by the triplet selection method as the input of the CNN, the three CNNs with shared weights are used for image feature learning, and the last layer of the network outputs a preliminary hash code. In the second stage, relying on the hash code of the first stage and the joint loss function, the neural network model is further optimized so that the generated hash code has higher query precision. We perform extensive experiments on the three public benchmark datasets CIFAR-10, NUS-WIDE, and MS-COCO. Experimental results demonstrate that the proposed method outperforms the compared methods, and the method is also superior to all previous deep hashing methods based on the triplet label.


Sign in / Sign up

Export Citation Format

Share Document