scholarly journals Low-Background Shielding Box for Autoradiography of Environmental Samples and the α-, β-, and γ-ray Sensitivities of the Imaging Plates

2019 ◽  
Vol 9 (23) ◽  
pp. 5209
Author(s):  
Shizuma ◽  
Oba

Autoradiography using imaging plates is a conventional method for the visualization of the distribution of radionuclides. Imaging plates have high sensitivity to the charged particles of α- and β-rays but are also sensitive to γ-rays. When the radioactivity level in the sample is low, a longer exposure time is needed, and shielding of the natural background radiation is necessary. Large imaging plates (e.g., 35 × 40 cm), which can obtain the radioactivity distribution over a wider area, were developed. In this work, a low-background shielding box is developed for large imaging plates, and the shielding characteristics of the box and sensitivities of the imaging plate to α-, β-, and γ-rays are quantitatively investigated. It is shown, by considering the sensitivity of imaging plates to α-, β-, and γ-rays, that most images of environmental samples are the result of α- or β-rays emitted from radionuclides at the sample surface, but not from the whole sample. To exemplify autoradiography using the presented shielding box, some environmental samples contaminated with radioactive fallout from the Fukushima Daiichi Nuclear Power Plant accident are measured. The distribution of radionuclides is clearly visualized and, furthermore, information of the migration of radiocesium in the sample is obtained.

2018 ◽  
Vol 170 ◽  
pp. 04021
Author(s):  
E. Simon ◽  
P. Guimbal

The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.


Author(s):  
N. Mori ◽  
T. Oikawa ◽  
Y. Harada ◽  
J. Miyahara ◽  
T. Matsuo

The Imaging Plate (IP) is a new type imaging device, which was developed for diagnostic x ray imaging. We have reported that usage of the IP for a TEM has many merits; those are high sensitivity, wide dynamic range, and good linearity. However in the previous report the reading system was prototype drum-type-scanner, and IP was also experimentally made, which phosphor layer was 50μm thick with no protective layer. So special care was needed to handle them, and they were used only to make sure the basic characteristics. In this article we report the result of newly developed reading, printing system and high resolution IP for practical use. We mainly discuss the characteristics of the IP here. (Precise performance concerned with the reader and other system are reported in the other article.)Fig.1 shows the schematic cross section of the IP. The IP consists of three parts; protective layer, phosphor layer and support.


Author(s):  
Seiji Isoda ◽  
Kimitsugu Saitoh ◽  
Sakumi Moriguchi ◽  
Takashi Kobayashi

On the observation of structures by high resolution electron microscopy, recording materials with high sensitivity and high quality is awaited, especially for the study of radiation sensitive specimens. Such recording material should be easily combined with the minimum dose system and cryoprotection method. Recently a new recording material, imaging plate, comes to be widely used in X-ray radiography and also in electron microscopy, because of its high sensitivity, high quality and the easiness in handling the images with a computer. The properties of the imaging plate in 100 to 400 kV electron microscopes were already discussed and the effectiveness was revealed.It is demanded to study the applicability of the imaging plate to high voltage electron microscopy. The quality of the imaging plate was investigated using an imaging plate system (JEOL EM-HSR100) equipped in a new Kyoto 1000kV electron microscope. In the system both the imaging plate and films can be introduced together into the camera chamber. Figure 1 shows the effect of accelerating voltage on read-out signal intensities from the imaging plate. The characteristic of commercially available imaging plates is unfortunately optimized for 100 to 200 keV electrons and then for 600 to 1000 keV electrons the signal is reduced. In the electron dose range of 10−13 to 10−10 C/cm2, the signal increases linearly with logarithm of electron dose in all acceralating volatges.


2017 ◽  
Vol 59 (2) ◽  
pp. 350-351
Author(s):  
Abass Alavi ◽  
Thomas J. Werner ◽  
Søren Hess ◽  
Poul Flemming Høilund-Carlsen

1999 ◽  
Vol 72 (5) ◽  
pp. 969-977 ◽  
Author(s):  
Patrik Fauser ◽  
Jens Christian Tjell ◽  
Hans Mosbaek ◽  
Kim Pilegaard

Abstract A method for identifying and quantifying tire-tread particles in the environment has been developed. It is based on the measurement of extractable organic zinc. The high sensitivity of atomic absorption spectrometry (AAS) with a heated graphite atomizer (HGA) permits assessment of submilligram amounts of tire debris in environmental samples. The analysis is performed on aerosol and soil samples. This new method is more accurate and faster than the previously reported IR method.


2013 ◽  
Vol 726-731 ◽  
pp. 869-876
Author(s):  
Guo Hua Qiu

On the basis of field environmental investigation and monitoring, the environmental radioactivity background of Xinchang and Jijicao rock in Beishan preselected region has been preliminary investigated and studied, and the public dose from local natural background radiation is estimated which can provide basic data and information for environmental impact assessment and safety assessment of HLW(the high level radioactive waste) disposal repository in the future. From the result of investigation and study, the environmental radioactivity of Xinchang and Jijicao rock is generally within normal natural background. The effective dose to local resident from natural background radiation is 2.110 mSv/a by internal and external exposure.


2016 ◽  
Vol 718 ◽  
pp. 062050 ◽  
Author(s):  
E Sala ◽  
I S Hahn ◽  
W G Kang ◽  
G W Kim ◽  
Y D Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document