Development of imaging plate for a TEM and its characteristics

Author(s):  
N. Mori ◽  
T. Oikawa ◽  
Y. Harada ◽  
J. Miyahara ◽  
T. Matsuo

The Imaging Plate (IP) is a new type imaging device, which was developed for diagnostic x ray imaging. We have reported that usage of the IP for a TEM has many merits; those are high sensitivity, wide dynamic range, and good linearity. However in the previous report the reading system was prototype drum-type-scanner, and IP was also experimentally made, which phosphor layer was 50μm thick with no protective layer. So special care was needed to handle them, and they were used only to make sure the basic characteristics. In this article we report the result of newly developed reading, printing system and high resolution IP for practical use. We mainly discuss the characteristics of the IP here. (Precise performance concerned with the reader and other system are reported in the other article.)Fig.1 shows the schematic cross section of the IP. The IP consists of three parts; protective layer, phosphor layer and support.

1991 ◽  
Vol 35 (A) ◽  
pp. 407-413 ◽  
Author(s):  
Atsushi Shibata ◽  
Katsunari Sasaki ◽  
Takao Kinefuchi

AbstractThe Fuji Imaging Plate (IP) is a 2-dimensional detector in which a latent X-ray image is stored as a distribution of color centers on a photostimulable phosphor (BaFBr:Eu2+) screen. It has a large effective area, wide dynamic range and high sensitivity. Thus it has been widely used not only in medical but also in scientific and industrial fields. Particularly in X-ray structure analysis, mainly of proteins, it has been used extensively and achieved good results.On the other hand, few applications have been reported in the field except for structure analysis, in spite of the superior performance of the IP which will give significant advantages in various measurements which have been done using an X-ray film such as electric device and fiber specimen.Therefore we report here the basic performance of R-AXIS II(Rigaku Automated X-Ray Imaging System II), an IP reader made by Rigaku, and some applications of X-ray diffraction measurements using IP.


Author(s):  
Arira Ishikawa ◽  
Hitoshi Suda ◽  
Akira Fukami ◽  
Tetsuo Oikawa ◽  
Yoshihiro Arai

To record radiation sensitive specimens at low dosage, a recording media with high sensitivity is required. Conventionally, some x-ray films have been used for this purpose. According to our experiences, however, its own granular noise is so severe that the practical sensitivity is restricted to the order of 10-13 C/cm2. The imaging plate (IP), recently developed for a transmission electron microscope, is a promising recording media, as it has a wide dynamic range, good linearity and high sensitivity of the order of 1×10-14 C/cm2 for the electron beam. The grain size of photostimulable phosphor, which composes the phosphor layer in the IP, is about 5 μm. As image recorded in the IP is read out as the digital image with the pixel size of 50 μm, the granularity of the IP can be negligible. The increase of the quantum noise, due to the fluctuation of the number of electrons per each pixel, at the low dosage will restrict the practical sensitivity of the IP. In order to raise this sensitivity, we applied the filtering technique which was developed for reduction of the granular noise of high sensitive x-ray film.


2007 ◽  
Vol 98 (1) ◽  
pp. 502-512 ◽  
Author(s):  
Michael T. Lippert ◽  
Kentaroh Takagaki ◽  
Weifeng Xu ◽  
Xiaoying Huang ◽  
Jian-Young Wu

We describe methods to achieve high sensitivity in voltage-sensitive dye (VSD) imaging from rat barrel and visual cortices in vivo with the use of a blue dye RH1691 and a high dynamic range imaging device (photodiode array). With an improved staining protocol and an off-line procedure to remove pulsation artifact, the sensitivity of VSD recording is comparable with that of local field potential recording from the same location. With this sensitivity, one can record from ∼500 individual detectors, each covering an area of cortical tissue 160 μm in diameter (total imaging field ∼4 mm in diameter) and a temporal resolution of 1,600 frames/s, without multiple-trial averaging. We can record 80–100 trials of intermittent 10-s trials from each imaging field before the VSD signal reduces to one half of its initial amplitude because of bleaching and wash-out. Taken together, the methods described in this report provide a useful tool for visualizing evoked and spontaneous waves from rodent cortex.


2018 ◽  
Vol 170 ◽  
pp. 04021
Author(s):  
E. Simon ◽  
P. Guimbal

The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.


Author(s):  
T. Oikawa ◽  
N. Mori ◽  
T. Osuna ◽  
M. Ohnishi ◽  
M. Kawasaki

The fundamental characteristics of the Imaging Plate System for a TEM (TEM-IP System) have already been ascertained and the system has began to be put to practical use in various fields of transmission electron microscopy. When considering the practicability of any image recording device, the “image quality” is an important factor.In this study, the S/N ratio of the TEM-IP System, one of the evaluation factors for the “image quality” of the system is estimated.Signal measurement was carried out under two readout conditions high resolution mode (HR-Mode) and high sensitivity mode (HS-Mode), which are available in the IP-reader of the PIXsysTEM. In order to distinguish between instrumental noise (system noise) and noninstrumental noise (quantum noise), the S/N ratio was measured as a function of the electron dose, and the dose was widely varied in the dynamic range of the system.


1994 ◽  
Vol 332 ◽  
Author(s):  
Yasuo Takagi ◽  
Yoshitaka Okitsu ◽  
Toshiyasu Ukena

ABSTRACTDirect observation of diffraction arcs by X-ray from nanoscale precipitates in steels has become possible for the first time by using a highly brilliant and focused synchrotron radiation beam at BL3A of Photon Factory, and also by using an “imaging plate”, a two dimensional X-ray detector which has a wide dynamic range and high sensitivity. For examples, most of the diffraction arcs from ε-Cu precipitates (∼200 Å in diameter and ∼1 at. % in concentration) in Cu-added steels were observed. The method can apply to nondestructive and in-situ observation of creation and growth processes of the precipitates which has close relationships to various physical properties of the matrix steels.


Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


Author(s):  
F. Ouyang ◽  
D. A. Ray ◽  
O. L. Krivanek

Electron backscattering Kikuchi diffraction patterns (BKDP) reveal useful information about the structure and orientation of crystals under study. With the well focused electron beam in a scanning electron microscope (SEM), one can use BKDP as a microanalysis tool. BKDPs have been recorded in SEMs using a phosphor screen coupled to an intensified TV camera through a lens system, and by photographic negatives. With the development of fiber-optically coupled slow scan CCD (SSC) cameras for electron beam imaging, one can take advantage of their high sensitivity and wide dynamic range for observing BKDP in SEM.We have used the Gatan 690 SSC camera to observe backscattering patterns in a JEOL JSM-840A SEM. The CCD sensor has an active area of 13.25 mm × 8.83 mm and 576 × 384 pixels. The camera head, which consists of a single crystal YAG scintillator fiber optically coupled to the CCD chip, is located inside the SEM specimen chamber. The whole camera head is cooled to about -30°C by a Peltier cooler, which permits long integration times (up to 100 seconds).


Author(s):  
D. Shindo

Imaging plate has good properties, i.e., a wide dynamic range and good linearity for the electron intensity. Thus the digital data (2048x1536 pixels, 4096 gray levels in log scale) obtained with the imaging plate can be used for quantification in electron microscopy. By using the image processing system (PIXsysTEM) combined with a main frame (ACOS3900), quantitative analysis of electron diffraction patterns and high-resolution electron microscope (HREM) images has been successfully carried out.In the analysis of HREM images observed with the imaging plate, quantitative comparison between observed intensity and calculated intensity can be carried out by taking into account the experimental parameters such as crystal thickness and defocus value. An example of HREM images of quenched Tl2Ba2Cu1Oy (Tc = 70K) observed with the imaging plate is shown in Figs. 1(b) - (d) comparing with a structure model proposed by x-ray diffraction study of Fig. 1 (a). The image was observed with a JEM-4000EX electron microscope (Cs =1.0 mm).


Author(s):  
Seiji Isoda ◽  
Kimitsugu Saitoh ◽  
Sakumi Moriguchi ◽  
Takashi Kobayashi

On the observation of structures by high resolution electron microscopy, recording materials with high sensitivity and high quality is awaited, especially for the study of radiation sensitive specimens. Such recording material should be easily combined with the minimum dose system and cryoprotection method. Recently a new recording material, imaging plate, comes to be widely used in X-ray radiography and also in electron microscopy, because of its high sensitivity, high quality and the easiness in handling the images with a computer. The properties of the imaging plate in 100 to 400 kV electron microscopes were already discussed and the effectiveness was revealed.It is demanded to study the applicability of the imaging plate to high voltage electron microscopy. The quality of the imaging plate was investigated using an imaging plate system (JEOL EM-HSR100) equipped in a new Kyoto 1000kV electron microscope. In the system both the imaging plate and films can be introduced together into the camera chamber. Figure 1 shows the effect of accelerating voltage on read-out signal intensities from the imaging plate. The characteristic of commercially available imaging plates is unfortunately optimized for 100 to 200 keV electrons and then for 600 to 1000 keV electrons the signal is reduced. In the electron dose range of 10−13 to 10−10 C/cm2, the signal increases linearly with logarithm of electron dose in all acceralating volatges.


Sign in / Sign up

Export Citation Format

Share Document