scholarly journals Predicting Melting Points of Biofriendly Choline-Based Ionic Liquids with Molecular Dynamics

2019 ◽  
Vol 9 (24) ◽  
pp. 5367 ◽  
Author(s):  
Karl Karu ◽  
Fred Elhi ◽  
Kaija Põhako-Esko ◽  
Vladislav Ivaništšev

In this work, we introduce a simulation-based method for predicting the melting point of ionic liquids without prior knowledge of their crystal structure. We run molecular dynamics simulations of biofriendly, choline cation-based ionic liquids and apply the method to predict their melting point. The root-mean-square error of the predicted values is below 24 K. We advocate that such precision is sufficient for designing ionic liquids with relatively low melting points. The workflow for simulations is available for everyone and can be adopted for any species from the wide chemical space of ionic liquids.

2014 ◽  
Vol 4 (2) ◽  
pp. 151-172 ◽  
Author(s):  
Marta L.S. Batista ◽  
Joao A.P. Coutinho ◽  
Jose R.B. Gomes

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 734
Author(s):  
Aija Trimdale ◽  
Anatoly Mishnev ◽  
Agris Bērziņš

The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed by the diOHBAs. The crystal structure analysis showed that classical carboxylic acid homodimers and ring-like hydrogen bond motifs consisting of six diOHBA molecules are prominently present in almost all analyzed crystal structures. Both experimental spectroscopic investigations and molecular dynamics simulations indicated that the extent of intramolecular bonding between carboxyl and hydroxyl groups in solution has the most significant impact on the solid phases formed by the diOHBAs. Additionally, the extent of hydrogen bonding with solvent molecules and the mean lifetime of solute–solvent associates formed by diOHBAs and 2-propanol were also investigated.


2013 ◽  
Vol 12 (08) ◽  
pp. 1341002 ◽  
Author(s):  
XIN ZHANG ◽  
MING LEI

The deamination process of isoxanthopterin catalyzed by isoxanthopterin deaminase was determined using the combined QM(PM3)/MM molecular dynamics simulations. In this paper, the updated PM3 parameters were employed for zinc ions and the initial model was built up based on the crystal structure. Proton transfer and following steps have been investigated in two paths: Asp336 and His285 serve as the proton shuttle, respectively. Our simulations showed that His285 is more effective than Aap336 in proton transfer for deamination of isoxanthopterin. As hydrogen bonds between the substrate and surrounding residues play a key role in nucleophilic attack, we suggested mutating Thr195 to glutamic acid, which could enhance the hydrogen bonds and help isoxanthopterin get close to the active site. The simulations which change the substrate to pterin 6-carboxylate also performed for comparison. Our results provide reference for understanding of the mechanism of deaminase and for enhancing the deamination rate of isoxanthopterin deaminase.


2013 ◽  
Vol 423-426 ◽  
pp. 935-938 ◽  
Author(s):  
Ji Feng Li ◽  
Xiao Ping Zhao ◽  
Jian Liu

Molecular dynamics simulations were performed to calculate the melting points of perfect crystalline aluminum to high pressures. Under ambientpressure, there exhibits about 20% superheating before melting compared to the experimental melting point. Under high pressures, thecalculated melting temperature increases with the pressure but at a decreasing rate, which agrees well with the Simon's melting equation. Porosity effect was also studied for aluminum crystals with various initial porosity at ambient pressure, which shows that the equilibrium melting point decreases with the initial porosity as experiments expect.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5206
Author(s):  
Dmitry Bocharov ◽  
Inga Pudza ◽  
Konstantin Klementiev ◽  
Matthias Krack ◽  
Alexei Kuzmin

Wurtzite-type zinc oxide (w-ZnO) is a widely used material with a pronounced structural anisotropy along the c axis, which affects its lattice dynamics and represents a difficulty for its accurate description using classical models of interatomic interactions. In this study, ab initio molecular dynamics (AIMD) was employed to simulate a bulk w-ZnO phase in the NpT ensemble in the high-temperature range from 300 K to 1200 K. The results of the simulations were validated by comparison with the experimental Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra and known diffraction data. AIMD NpT simulations reproduced well the thermal expansion of the lattice, and the pronounced anharmonicity of Zn–O bonding was observed above 600 K. The values of mean-square relative displacements and mean-square displacements for Zn–O and Zn–Zn atom pairs were obtained as a function of interatomic distance and temperature. They were used to calculate the characteristic Einstein temperatures. The temperature dependences of the O–Zn–O and Zn–O–Zn bond angle distributions were also determined.


2021 ◽  
Author(s):  
Mood Mohan ◽  
Hemant Choudhary ◽  
Anthe George ◽  
Blake A. Simmons ◽  
Kenneth Sale ◽  
...  

Herein we report the dissolution mechanism of lignin in cholinium-based ionic liquids by molecular dynamics simulations. Multiple hydrogen bonds, longer HB lifetimes, and higher pKa of [Ch][Lys] makes it a better solvent for lignin than acidic ILs.


Sign in / Sign up

Export Citation Format

Share Document