scholarly journals Image Transmission over Cognitive Radio Networks for Smart Grid Applications

2019 ◽  
Vol 9 (24) ◽  
pp. 5498 ◽  
Author(s):  
Mahdi Bahaghighat ◽  
Seyed Ahmad Motamedi ◽  
Qin Xin

Today, Smart Grids (SGs), as the goal of the next-generation power grid system, span extremely wide aspects from power generation to end-user utilities. In smart grids, Energy and Information flows are mutually dependent and performance degradation of one side may have a high impact on the other side. In this work, we introduce our architecture for monitoring of Wind Turbine (WT) farms in smart grids. In our proposed system an industrial camera is embedded on a Wireless Cognitive Radio node for each WT to capture appropriate images and stream videos to the cognitive coordinator. Any packet loss in transmission between an embedded cognitive node and the coordinator can degrade peak signal-to-noise ratio (PSNR) of the received images. The image streaming is a delay sensitive transmission which should be done in harsh environments in SGs. To tackle these challenging issues, we introduce our efficient model, called JOPSS, for joint optimization of both packet size and Number of Spectrum Sensing Iterations (NSSI) during image transmission in time-restricted conditions. We define our proposed objective function as the quotient of the Overhead Time and the Effective Transmission Time (ETT). In addition, we introduce our methods based on the Minimum of Overhead Time Channel Selection (MOTS) for the efficient channel selection along with Dynamic Parameter Updating Procedure (DPUP) to benefit different strategies in Mandatory and Proactive Handoffs (MHO/PHO). The obtained results show that noticeable improvements in both PSNR and feature-similarity (FSIM) can be achieved on our models JOPSS and JOPSS-SAFE, respectively.

Author(s):  
Fenglei Du ◽  
Greg Bridges ◽  
D.J. Thomson ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
...  

Abstract With the ever-increasing density and performance of integrated circuits, non-invasive, accurate, and high spatial and temporal resolution electric signal measurement instruments hold the key to performing successful diagnostics and failure analysis. Sampled electrostatic force microscopy (EFM) has the potential for such applications. It provides a noninvasive approach to measuring high frequency internal integrated circuit signals. Previous EFMs operate using a repetitive single-pulse sampling approach and are inherently subject to the signal-to-noise ratio (SNR) problems when test pattern duty cycle times become large. In this paper we present an innovative technique that uses groups of pulses to improve the SNR of sampled EFM systems. The approach can easily provide more than an order-ofmagnitude improvement to the SNR. The details of the approach are presented.


2014 ◽  
Vol 909 ◽  
pp. 317-322
Author(s):  
Huan Pao Huang ◽  
Ji An Yu ◽  
Qian Su ◽  
Lei Wang

2 × 660MW ultra-supercritical units of O'Brien Power Plant are single configuration of auxiliary pilot project, due to the higher its parameters and performance requirements, it need better control strategies to ensure safe and economical operation. Against traditional cascade PID main steam’s temperature control system delaying large, this article proposed control strategy based on Smith estimated. Main steam’s temperature controlled object inert zone mathematical model can be showed by multi-volume model, and use the improved system for large inertia Smith Predictor to make dynamic parameter control systems improvements. Simulation results of the simulation machine show that: Optimization emperor steam temperature control is in an adjustable range and the policy in separate auxiliary units is feasible.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-16
Author(s):  
Chuliang Guo ◽  
Li Zhang ◽  
Xian Zhou ◽  
Grace Li Zhang ◽  
Bing Li ◽  
...  

Multiplications have been commonly conducted in quantized CNNs, filters, and reconfigurable cores, and so on, which are widely deployed in mobile and embedded applications. Most multipliers are designed to perform multiplications with symmetric bit-widths, i.e., n - by n -bit multiplication. Such features would cause extra area overhead and performance loss when m - by n -bit multiplications ( m > n ) are deployed in the same hardware design, resulting in inefficient multiplication operations. It is highly desired and challenging to propose a reconfigurable multiplier design to accommodate operands with both symmetric and asymmetric bit-widths. In this work, we propose a reconfigurable approximate multiplier to support multiplications at various precisions, i.e., bit-widths. Unlike prior works of approximate adders assuming a uniform weight distribution with bit-wise independence, scenarios like a quantized CNN may have a centralized weight distribution and hence follow a Gaussian-like distribution with correlated adjacent bits. Thus, a new block-based approximate adder is also proposed as part of the multiplier to ensure energy-efficient operation with an awareness of the bit-wise correlation. Our experimental results show that the proposed approximate adder significantly reduces the error rate by 76% to 98% over a state-of-the-art approximate adder for Gaussian-like distribution scenarios. Evaluation results show that the proposed multiplier is 19% faster and 22% more power saving than a Xilinx multiplier IP at the same bit precision and achieves a 23.94-dB peak signal-to-noise ratio, which is comparable to the accurate one of 24.10 dB when deployed in a Gaussian filter for image processing tasks.


2020 ◽  
Vol 3 (1) ◽  
pp. 33-41
Author(s):  
Hwunjae Lee ◽  
◽  
Junhaeng Lee ◽  

This study evaluated PSNR of server display monitor and client display monitor of DSA system. The signal is acquired and imaged during the surgery and stored in the PACS server. After that, distortion of the original signal is an important problem in the process of observation on the client monitor. There are many problems such as noise generated during compression and image storage/transmission in PACS, information loss during image storage and transmission, and deterioration in image quality when outputting medical images from a monitor. The equipment used for the experiment in this study was P's DSA. We used two types of monitors in our experiment, one is P’s company resolution 1280×1024 pixel monitor, and the other is W’s company resolution 1536×2048 pixel monitor. The PACS Program used MARO-view, and for the experiment, a PSNR measurement program using Visual C++ was implemented and used for the experiment. As a result of the experiment, the PSNR value of the kidney angiography image was 26.958dB, the PSNR value of the lung angiography image was 28.9174 dB, the PSNR value of the heart angiography image was 22.8315dB, and the PSNR value of the neck angiography image was 37.0319 dB, and the knee blood vessels image showed a PSNR value of 43.2052 dB, respectively. In conclusion, it can be seen that there is almost no signal distortion in the process of acquiring, storing, and transmitting images in PACS. However, it suggests that the image signal may be distorted depending on the resolution and performance of each monitor. Therefore, it will be necessary to evaluate the performance of the monitor and to maintain the performance.


Sign in / Sign up

Export Citation Format

Share Document