scholarly journals Investigation and Prediction of Heavy-Duty Diesel Passenger Bus Emissions in Hainan Using a COPERT Model

Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 106 ◽  
Author(s):  
Feng Li ◽  
Jihui Zhuang ◽  
Xiaoming Cheng ◽  
Mengliang Li ◽  
Jiaxing Wang ◽  
...  

To investigate the emission status and predict the future trends of heavy-duty diesel passenger buses in Hainan Province, the technical level distribution, activity characteristics, and operating conditions of heavy-duty diesel passenger buses were statistically analyzed. The emissions of CO, CO2, NOX, and PM of the province’s heavy-duty diesel passenger buses in 2017 were calculated by the COPERT model. The Portable Emission Measurement System was applied to the calibration of emission factors calculated by the model to improve the accuracy of emission predictions. The prediction of emission trends sets three different scenarios: baseline scenarios (BAS), emission reduction standard scenario (ERS), and emission reduction standard and replacement by electric vehicle scenario (ERS and REV). The gray model was used to predict the number of heavy-duty diesel passenger buses in the three scenarios and combined with the calibrated emission factors to predict the emission trends under different scenarios. Results show that the ERS will reduce CO, CO2, NOX, and PM emissions by approximately 23%, 12%, 23%, and 46% respectively, in 2025 compared with BAS. ERS and REV will reduce CO, CO2, NOX, and PM emissions by approximately 38%, 33%, 38%, and 50% for the three emissions, compared with the BAS.

2012 ◽  
Vol 12 (7) ◽  
pp. 18565-18604 ◽  
Author(s):  
Y. Wu ◽  
S. J. Zhang ◽  
M. L. Li ◽  
Y. S. Ge ◽  
J. W. Shu ◽  
...  

Abstract. China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011–2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km −1) nor brake-specific (g kW h−1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km−1, 12.5± 1.3 g km−1, and 11.8±2.0 g km−1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet in the future.


2012 ◽  
Vol 12 (19) ◽  
pp. 9365-9379 ◽  
Author(s):  
Y. Wu ◽  
S. J. Zhang ◽  
M. L. Li ◽  
Y. S. Ge ◽  
J. W. Shu ◽  
...  

Abstract. China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011–2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km−1) nor brake-specific (g kWh−1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km−1, 12.5 ± 1.3 g km−1, and 11.8 ± 2.0 g km−1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV fleet in the future.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 535 ◽  
Author(s):  
Christos Keramydas ◽  
Leonidas Ntziachristos ◽  
Christos Tziourtzioumis ◽  
Georgios Papadopoulos ◽  
Ting-Shek Lo ◽  
...  

Heavy-duty diesel trucks (HDDTs) comprise a key source of road transport emissions and energy consumption worldwide mainly due to the growth of road freight traffic during the last two decades. Addressing their air pollutant and greenhouse gas emissions is therefore required, while accurate emission factors are needed to logistically optimize their operation. This study characterizes real-world emissions and fuel consumption (FC) of HDDTs and investigates the factors that affect their performance. Twenty-two diesel-fueled, Euro IV to Euro VI, HDDTs of six different manufacturers were measured in the road network of the Hong Kong metropolitan area, using portable emission measurement systems (PEMS). The testing routes included urban, highway and mixed urban/highway driving. The data collected corresponds to a wide range of driving, operating, and ambient conditions. Real-world distance- and energy-based emission levels are presented in a comparative manner to capture the effect of after-treatment technologies and the role of the evolution of Euro standards on emissions performance. The emission factors’ uncertainty is analyzed. The impact of speed, road grade and vehicle weight loading on FC and emissions is investigated. An analysis of diesel particulate filter (DPF) regenerations and ammonia (NH3) slip events are presented along with the study of Nitrous oxide (N2O) formation. The results reveal deviations of real-world HDDTs emissions from emission limits, as well as the significant impact of different operating and driving factors on their performance. The occasional high levels of N2O emissions from selective catalytic reduction equipped HDDTs is also revealed, an issue that has not been thoroughly considered so far.


2015 ◽  
Vol 8 (1) ◽  
pp. 43-55 ◽  
Author(s):  
I. Ježek ◽  
L. Drinovec ◽  
L. Ferrero ◽  
M. Carriero ◽  
G. Močnik

Abstract. We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.


2013 ◽  
Vol 690-693 ◽  
pp. 1864-1871 ◽  
Author(s):  
Di Ming Lou ◽  
Si Li Qian ◽  
Zhi Yuan Hu ◽  
Pi Qiang Tan

In this paper, on-road CO, THC, NOX, CO2 gaseous emissions characteristics of china IV CNG bus were analyzed based on on-road vehicle emission test in the peak and non-peak hours of city traffic in Shanghai using a portable emission measurement system (PEMS). The experimental results reveal that: compared with the condition results in the non-peak hours, it (conditions in the peak hours) have lower average speed, longer idle time and shorter high speed time; the NOX emission factor and rate in the peak hour reduced by 5.66% and 70.2%; the CO, HC, CO2 emissions factors are increased by 47.2%, 32.6%, 20.8%, and the CO, HC, CO2 emissions rates reduced by 1.94%, 26.5%, 48.7% respectively, compared with that in the non-peak hours; The CO, HC, NOX, CO2 emissions factors all decreased as bus speed increased, while they increased as bus acceleration increased; the gaseous emissions rates all increased as bus speed increased; both the emissions factors and emissions rates contributions are highest at accelerations, higher at cruise speeds, and the lowest at decelerations for non-idling buses; the emissions rates under the condition of idling is lowest; gaseous emissions contribution under the various operating conditions has displayed certain correlations with the percentage of the time for different operating conditions.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Increased utilization of natural-gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduce greenhouse-gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOx, CO, and HC emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing, engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late burn (including double-peak heat release rate) was observed for advanced spark timing. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3 %), moderate rate of pressure rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


Sign in / Sign up

Export Citation Format

Share Document