scholarly journals A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 628 ◽  
Author(s):  
Guangzhi Xu ◽  
Xiaohui Ma ◽  
Ping Chang ◽  
Lin Wang

A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 ×   10 3 kg/m/s IVT within the AR track regions, about 50 % more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively.

2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2017 ◽  
Vol 7 (9) ◽  
pp. 656-658 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Kimio Hanawa ◽  
Tomowo Watanabe ◽  
Toshio Suga ◽  
Shang-Ping Xie

2017 ◽  
Author(s):  
Jorge Eiras-Barca ◽  
Alexandre M. Ramos ◽  
Joaquim G. Pinto ◽  
Ricardo M. Trigo ◽  
Margarida L. R. Liberato ◽  
...  

Abstract. The explosive cyclogenesis of extra-tropical cyclones and the occurrence of atmospheric rivers are characteristic features of baroclinic atmospheres, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979–2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific Basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. This insight can be helpful for the predictability of high impact weather associated with explosive cyclones and atmospheric rivers.


2019 ◽  
Vol 100 (5) ◽  
pp. 1653-1670 ◽  
Author(s):  
Frederick I Archer ◽  
Robert L Brownell ◽  
Brittany L Hancock-Hanser ◽  
Phillip A Morin ◽  
Kelly M Robertson ◽  
...  

Abstract Three subspecies of fin whales (Balaenoptera physalus) are currently recognized, including the northern fin whale (B. p. physalus), the southern fin whale (B. p. quoyi), and the pygmy fin whale (B. p. patachonica). The Northern Hemisphere subspecies encompasses fin whales in both the North Atlantic and North Pacific oceans. A recent analysis of 154 mitogenome sequences of fin whales from these two ocean basins and the Southern Hemisphere suggested that the North Pacific and North Atlantic populations should be treated as different subspecies. Using these mitogenome sequences, in this study, we conduct analyses on a larger mtDNA control region data set, and on 23 single-nucleotide polymorphisms (SNPs) from 144 of the 154 samples in the mitogenome data set. Our results reveal that North Pacific and North Atlantic fin whales can be correctly assigned to their ocean basin with 99% accuracy. Results of the SNP analysis indicate a correct classification rate of 95%, very low rates of gene flow among ocean basins, and that distinct mitogenome matrilines in the North Pacific are interbreeding. These results indicate that North Pacific fin whales should be recognized as a separate subspecies, with the name B. p. velifera Cope in Scammon 1869 as the oldest available name.


Sign in / Sign up

Export Citation Format

Share Document