scholarly journals A New Background Method for Greenhouse Gases Flux Calculation Based in Back-Trajectories Over the Amazon

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 734
Author(s):  
Lucas Gatti Domingues ◽  
Luciana Vanni Gatti ◽  
Afonso Aquino ◽  
Alber Sánchez ◽  
Caio Correia ◽  
...  

The large amount of carbon stored in trees and soils of the Amazon rain forest is under pressure from land use as well as climate change. Therefore, various efforts to monitor greenhouse gas exchange between the Amazon forest and the atmosphere are now ongoing, including regular vertical profile (surface to 4.5 km) greenhouse gas measurements across the Amazon. These profile measurements can be used to calculate fluxes to and from the rain forest to the atmosphere at large spatial scales by considering the enhancement or depletion relative to the mole fraction of air entering the Amazon basin from the Atlantic, providing an important diagnostic of the state, changes and sensitivities of the forests. Previous studies have estimated greenhouse gas mole fractions of incoming air (‘background’) as a weighted mean of mole fractions measured at two background sites, Barbados (Northern Hemisphere) and Ascension (Southern hemisphere) in the Tropical Atlantic, where the weights were based on sulphur hexafluoride (SF6) measured locally (in the Amazon vertical profiles) and at the two background sites. However, this method requires the accuracy and precision of SF6 measurements to be significantly better than 0.1 parts per trillion (picomole mole−1), which is near the limit for the best SF6 measurements and assumes that there are no SF6 sources in the Amazon basin. We therefore present here an alternative method. Instead of using SF6, we use the geographical position of each air-mass back-trajectory when it intersects the limit connecting these two sites to estimate contributions from Barbados versus Ascension. We furthermore extend the approach to include an observation site further south, Cape Point, South Africa. We evaluate our method using CO2 vertical profile measurements at a coastal site in Brazil comparing with values obtained using this method where we find a high correlation (r2 = 0.77). Similarly, we obtain good agreement for CO2 background when comparing our results with those based on SF6, for the period 2010–2011 when the SF6 measurements had excellent precision and accuracy. We also found high correspondence between the methods for background values of CO, N2O and CH4. Finally, flux estimates based on our new method agree well with the CO2 flux estimates for 2010 and 2011 estimated using the SF6-based method. Together, our findings suggest that our trajectory-based method is a robust new way to derive background air concentrations for the purpose of greenhouse gas flux estimation using vertical profile data.

2017 ◽  
Author(s):  
Jorge Saturno ◽  
Florian Ditas ◽  
Marloes Penning de Vries ◽  
Bruna A. Holanda ◽  
Mira L. Pöhlker ◽  
...  

Abstract. Long-range transport (LRT) plays an important role in the Amazon rain forest by bringing in different primary and secondary aerosol particles from distant sources. The atmospheric oxidation of dimethyl sulfide (DMS), emitted from marine plankton, is considered an important sulfate source over the Amazon rain forest, with a lesser contribution from terrestrial soil and vegetation sulfur emissions. Volcanic sulfur emissions from Africa could be a source of particulate sulfate to the Amazonian atmosphere upon transatlantic transport but no observations have been published. By using satellite observations, together with ground‑based and airborne aerosol particle observations, this paper provides evidence of the influence that volcanic emissions have on the aerosol properties that have been observed in central Amazonia. Under the volcanic influence, sulfate mass concentrations reached up to 3.6 µg m−3 (hourly mean) at ground level, the highest value ever reported in the Amazon region. The hygroscopicity parameter was higher than the characteristic dry-season average, reaching a maximum of 0.36 for accumulation mode aerosol particles. Airborne measurements and satellite data indicated the transport of two different volcanic plumes reaching the Amazon Basin in September 2014 with a sulfate-enhanced layer at an altitude between 4 and 5 km. These observations show that remote volcanic sources can episodically affect the aerosol cycling over the Amazon rain forest and perturb the background conditions. Further studies should address the long-term effect of volcanogenic aerosol particles over the Amazon Basin by running long-term and intensive field measurements in the Amazon region and by monitoring African emissions and their transatlantic transport.


Author(s):  
Michael McClain

To read the press of recent years, one might imagine that the fate of the world rests in the hands of those who would develop the Amazon basin. Waves of incoming colonists are blamed for the bulk of the deforestation and development (Schomberg 1998), but Asian logging firms, multinational oil companies, and gold miners are also portrayed as destructive agents hacking down the forest, systematically undermining its biodiversity, and severely contaminating its myriad ecosystems (Althaus 1996, Ferreira 1996, James 1998). The effects of these varied threats are regularly broadcast in alarming tones. Rueters News Service warned in January 1998 that “Brazil’s Amazon rain forest, the world’s richest trove of biological diversity and source of much of the Earth’s oxygen, continues to be ravaged” (Craig 1998). And, in April 1999, a writer for the Associated Press communicated the “fear” of unspecified scientists that “damage to the rain forest... could throw the Earth’s climate out of balance” (Donn 1999). Clearly, the fate of the Amazon and the implications of its fate to the overall Earth system are topics of enormous scientific and popular interest. While there is little disagreement that the complete destruction of Amazon forests would be catastrophic, what about partial deforestation of the region? How much, and which parts, of the Amazon can be converted to sustainable human land uses without compromising the ecological integrity of the conserved areas? How might this development impact regional climate, adjoining coastal systems, and overall global processes? Answers to these volatile questions remain elusive and seemingly endless strands of controversy swirl about them. At the heart of the matter, yet largely beyond the public discussion, are biogeochemical cycles that support and regulate the functioning of the Amazonia’s biological systems. Moreover, it is the incomplete understanding of these cycles that promotes uncertainty and feeds the controversy. The purpose of this book is to present a coherent assessment of our current understanding of the biogeochemical functioning of the Amazon basin. Although it is surely presumptuous to assume that this presentation will shed sufficient light on the uncertainties to eliminate the current controversies, we hope that it will provide a basis for lifting the discussion to a higher level.


2018 ◽  
Author(s):  
Christopher Pöhlker ◽  
David Walter ◽  
Hauke Paulsen ◽  
Tobias Könemann ◽  
Emilio Rodríguez-Caballero ◽  
...  

Abstract. The Amazon rain forest experiences the combined pressures from man-made deforestation and progressing climate change, causing severe and potentially disruptive perturbations of the ecosystem's integrity and stability. To intensify research on critical aspects of Amazonian biosphere-atmosphere exchange, the Amazon Tall Tower Observatory (ATTO) has been established in the central Amazon Basin. Here we present a multi-year analysis of backward trajectories to derive an effective footprint region of the observatory, which spans large parts of the particularly vulnerable eastern basin. Further, we characterize geospatial properties of the footprint regions, such as climatic conditions, distribution of ecoregions, land cover categories, deforestation dynamics, agricultural expansion, fire regimes, infrastructural development, protected areas, as well as future deforestation scenarios. This study is meant to be a resource and reference work, helping to embed the ATTO observations into the larger context of man-made transformations of Amazonia. We conclude that the chances to observe an unperturbed rain forest-atmosphere exchange will likely decrease in the future, whereas the atmospheric signals from man-made and climate change-related forest perturbations will likewise increase in frequency and intensity.


Author(s):  
Manuel Calvopiña ◽  
Jacob Bezemer

Tungiasis occurs in tropical and subtropical areas in Central and South America and sub-Saharan Africa and is a Neglected Tropical Disease. We diagnosed three cases of tungiasis in a Dutch family visiting indigenous communities in the Amazon basin of Ecuador. Eight days after returning, they presented papular, pruritic, and painful lesions on the feet, with a whitish halo and a blackish central point with abundant whitish eggs upon extraction. For the first time, we demonstrate that Tunga spp. transmission is present in remote indigenous communities in the Amazon rainforest of Ecuador. It will be important to investigate the occurrence of tungiasis and associated morbidity among local inhabitants and consider prevention measures among locals and travelers to these areas.


2021 ◽  
Vol 5 (2) ◽  
pp. 184-217
Author(s):  
Tine Ratna Poerwantika

This article was written with the aim of knowing the dynamics of deforestation in Brazil, especially the Amazon forest, and to find out the driving factors for deforestation in the Amazon rainforest in 2019 from a critical perspective. The Amazon rain forest is reported to have led to massive deforestation using massive forest burning instruments in 2019, sparking reactions from various international elements. To simplify the analysis in this article, the author uses the concept of captal expansion from David Harvey and to further clarify the problem in this article the author adds the concept of deforestation from William Laurance, the writer uses descriptive analytical research methods and uses secondary data sources. In this article, the authors find various correlations between the interests of the Brazilian government and the interests of multinational companies that lead to encouragement of land clearing in various forests, especially the Amazon, on the pretext of meeting world food demand and efforts to restore Brazilian economic instability as justification.


2000 ◽  
Vol 53 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Hermann Behling ◽  
Marcondes Lima da Costa

AbstractHolocene environments have been reconstructed by multiproxy studies of an 850-cm-long core from Rio Curuá dating to >8000 14C yr B.P. The low-energy river lies in the eastern Amazon rain forest in the Caxiuanã National Forest Reserve, 350 km west of Belem in northern Brazil. Sedimentological, mineralogical, and geochemical dates demonstrate that the deposits correspond to two different environments, sediments of an active river before 8000 14C yr B.P. and later a passive river system. The pollen analytical results indicate four different local and regional Holocene paleoenvironmental periods: (1) a transition to a passive fluvial system and a well-drained terra firme (unflooded upland) Amazon rain forest with very limited development of inundated forests (várzea and igapó) (>7990–7030 14C yr B.P.); (2) a sluggish river with a local Mauritia palm-swamp and similar regional vegetation, as before (7030–5970 14C yr B.P.); (3) a passive river, forming shallow lake conditions and with still-abundant terra firme forest in the study region (5970–2470 14C yr B.P.); and (4) a blocked river with high water levels and marked increase of inundated forests during the last 2470 14C yr B.P. Increased charcoal during this last period suggests the first strong presence of humans in this region. The Atlantic sea level rise was probably the major factor in paleoenvironmental changes, but high water stands might also be due to greater annual rainfall during the late Holocene.


1992 ◽  
Vol 6 ◽  
pp. 65-65
Author(s):  
P.A. Colinvaux

The climate of the Amazon during the last northern glaciation may be taken to represent the normal climate of the basin throughout the Quaternary, since boundary conditions for Amazon and neotropical environments had not otherwise changed since the Andean orogeny and emplacment of the Isthmus of Panama late in the Teritary.The few radiocarbon dated data describing the climate of the ice age Amazon suggest that the principal climatic forcing was cooling in excess of 6 o C, associated with modest reductions in precipitation. Unlike Africa, the New World tropics were not noticeably arid. The evidence for cooling comes from paleoecological data at the foot of the Equatorial Andes, where temperature sensitive taxa had descended 1500 m into elevations that now support rain forest. Pollen data from all elevations of the Andes show that climates continued moist throughout glacial cycles, thus making appropriate the application of moist air lapse rates to substantial evidence for cooling in the high Andes also. Evidence that reductions in precipitation were modest in the lowlands come from new pollen records from 2-300 m elevation in the central Amazon of Brazil.A long record of lake sediments from lowland Panama possibly represents a complete glacial cycle. Pollen, phytolith, and other paleoecological data show both cooling and modest reductions in precipitation, in parallel with the Amazon records.At all stages in glacial cycles, neotropical forests have been subjected to intermediate disturbance tending to prevent competitive exclusion. But the forests have never been fragmented or displaced into “refugia”. Vicariance has always been provided by the scales of geography and local disturbance. The forests are dynamic systems of species whose adaptive norms are appropriate to climates of the ice age earth, but which are able to form temporary accomodations in response to climatic change.The modern Amazon rain forest was formed as an ephemeral response to the short-lived warm episode of the Holocene. Local concentrations of species, like those noted on elevated regions surrounding the Amazon basin by refugial theorists, can best be explained because occupying regions of greatest environmental change, with the consequent pattern of invasion and reinvasion necessary with each climatic shift.


2019 ◽  
Vol 19 (13) ◽  
pp. 8425-8470 ◽  
Author(s):  
Christopher Pöhlker ◽  
David Walter ◽  
Hauke Paulsen ◽  
Tobias Könemann ◽  
Emilio Rodríguez-Caballero ◽  
...  

Abstract. The Amazon rain forest experiences the combined pressures from human-made deforestation and progressing climate change, causing severe and potentially disruptive perturbations of the ecosystem's integrity and stability. To intensify research on critical aspects of Amazonian biosphere–atmosphere exchange, the Amazon Tall Tower Observatory (ATTO) has been established in the central Amazon Basin. Here we present a multi-year analysis of backward trajectories to derive an effective footprint region of the observatory, which spans large parts of the particularly vulnerable eastern basin. Further, we characterize geospatial properties of the footprint regions, such as climatic conditions, distribution of ecoregions, land cover categories, deforestation dynamics, agricultural expansion, fire regimes, infrastructural development, protected areas, and future deforestation scenarios. This study is meant to be a resource and reference work, helping to embed the ATTO observations into the larger context of human-caused transformations of Amazonia. We conclude that the chances to observe an unperturbed rain forest–atmosphere exchange at the ATTO site will likely decrease in the future, whereas the atmospheric signals from human-made and climate-change-related forest perturbations will increase in frequency and intensity.


2019 ◽  
Author(s):  
Madhura Chakraborty ◽  
Goutam Dey ◽  
Rohit Kumar Prasad Gupta

Sign in / Sign up

Export Citation Format

Share Document