scholarly journals On the Relationship of a Low-Level Jet and the Formation of a Heavy-Rainfall-Producing Mesoscale Vortex over the Yangtze River Basin

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 156
Author(s):  
Shen-Ming Fu ◽  
Huan Tang ◽  
Yu Li ◽  
Hui Ma ◽  
Jian-Hua Sun

Dabie vortices (DBVs) are a type of heavy-rainfall-producing mesoscale vortices that appear with a high frequency around the Dabie Mountain over the Yangtze River Basin. For a long time, scholars have found that DBVs tend to form when a low-level jet (LLJ) appears in their neighboring regions. However, the underlying mechanisms of this phenomenon still remain vague. This study furthers the understanding of this type of event by conducting detailed analyses on a long-lived eastward-moving DBV that caused a severe flood in the 2020 summer. It is found that the LLJ in this event was belonged to a nocturnal LLJ type, with its maximum/minimum appeared around 2100/0600 UTC. The diurnal cycle of LLJ affected precipitation and intensity of the DBV notably: As the LLJ intensified, vortex’s precipitation and intensity both enhanced, and vice versa. The LLJ exerted two effects on the DBV’s formation that are opposite to each other. The more important effect is that the LLJ caused intense lower-level convergence around its northern terminus. This convergence directly produced cyclonic vorticity through vertical stretching, which dominates the DBV’s formation and enhances the convection-related upward cyclonic vorticity transport that acted as another favorable factor. The less important effect is that (i) the LLJ induced import of anticyclonic vorticity into the vortex’s central region, which decelerated the DBV’s formation; and (ii) the LLJ-related to strong ascending motions tilted horizontal vorticity into negative vertical vorticity, which reduced the growth rate of cyclonic vorticity.

2010 ◽  
Vol 23 (5) ◽  
pp. 1146-1159 ◽  
Author(s):  
Jing Yang ◽  
Bin Wang ◽  
Bin Wang ◽  
Qing Bao

Abstract The lower reach of the Yangtze River basin (LYRB) is located at the central region of the mei-yu and baiu front, which represents the subtropical East Asian (EA) summer monsoon. Based on the newly released daily rainfall data, two dominant intraseasonal variation (ISV) modes are identified over the LYRB during boreal summer (May–August), with spectral peaks occurring on day 15 (the biweekly mode) and day 24 (the 21–30-day mode). These two modes have comparable intensities, and together they account for above about 57% of the total intraseasonal variance. Both ISV modes exhibit baroclinic structures over the LYRB at their extreme phases. However, the genesis and evolutions associated with the two modes are different. Considering the genesis of their extreme wet phases over the LYRB, the biweekly mode is initiated by a midlatitude jet stream vorticity anomaly moving southeastward, while the 21–30-day mode is primarily associated with a low-level westward propagation of an anticyclonic anomaly from 145° to 120°E, which reflects the westward extension of the western North Pacific subtropical high (WNPSH). The development of the biweekly mode at LYRB is enhanced by the northwestward movement of a low-level anticyclonic anomaly from the Philippine Sea to the south of Taiwan, which is a result of the enhancement of the WNPSH resulting from its merger with a transient midlatitude high. In contrast, the development of the 21–30-day mode is enhanced by an upper-level trough anomaly moving from Lake Baikal to far east Russia. These two ISV periodicities are also found to be embedded in their corresponding source regions. The new knowledge on the sources and evolutions of the two major LYRB ISV modes provides empirical predictors for the intraseasonal variation in the subtropical EA summer monsoon.


2001 ◽  
Vol 18 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Cheng Minghu ◽  
He Huizhong ◽  
Mao Dongyan ◽  
Qi Yanjun ◽  
Cui Zhehu ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2677
Author(s):  
Yuda Yang ◽  
Zhengrong Xu ◽  
Weiwei Zheng ◽  
Shuihan Wang ◽  
Yibo Kang

Floods caused by extreme precipitation events, in the context of climate warming, are one of the most serious natural disasters in monsoon region societies. The great flood in the Yangtze River Basin in 1849, in Eastern China, was a typical extreme flood event. According to historical archives, local chronicles, diaries, and historical hydrological survey data, this study reconstructed the temporal and spatial patterns of extreme precipitation in 1849, and the flood process of the Yangtze River. We found four major precipitation events at the middle and lower reaches of the Yangtze River, from 18 May to 18 July 1849. The torrential rainfall area showed a dumbbell-like structure along the Yangtze River, with two centers distributed separately in the east and west. For the specific flood process of the Yangtze River, many tributaries of the Yangtze River system entered the flood season consecutively since April, and the mainstream of the Yangtze River experienced tremendous pressure on flood prevention with the arrival of multiple rounds of heavy rainfall. In mid-to-late July, the water level and flow rate of many stations along the mainstream and tributaries had reached their record high. The record-breaking peak flow rate at many stations along the mainstream and tributaries in the middle reaches of the Yangtze River indicated intense precipitation in the area. The heavy rainfall disaster in the Yangtze River Basin could be driven by these reasons. First, the cold air in North China was extraordinary active in 1849, which made it difficult for the subtropical high pressure to move northward. Second, the rain belt stagnated in the Yangtze River Basin for a long time, and the Meiyu period reached 42 days, 62% longer than normal years. Third, the onset of a southwest monsoon was earlier and more active, which provided abundant moisture to the Yangtze River Basin. The great flood disaster was caused by heavy precipitation at the middle reaches, which made it quite different from the other three great floods in the Yangtze River in the 20th century. At present, the large water conservancy projects in the Yangtze River are mainly designed for flood problems caused by rainstorms in the upper reaches of the Yangtze River. The middle reaches of the Yangtze River, however, are facing the weakening of flood diversion capacity, caused by social and economic development. Therefore, future flood prevention measures in the Yangtze River should pay great attention to the threat of this flood pattern.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 731
Author(s):  
Zhuoqing Hao ◽  
Jixia Huang ◽  
Yantao Zhou ◽  
Guofei Fang

The Yangtze River Basin is among the river basins with the strongest strategic support and developmental power in China. As an invasive species, the pinewood nematode (PWN) Bursaphelenchus xylophilus has introduced a serious obstacle to the high-quality development of the economic and ecological synchronization of the Yangtze River Basin. This study analyses the occurrence and spread of pine wilt disease (PWD) with the aim of effectively managing and controlling the spread of PWD in the Yangtze River Basin. In this study, statistical data of PWD-affected areas in the Yangtze River Basin are used to analyse the occurrence and spread of PWD in the study area using spatiotemporal visualization analysis and spatiotemporal scanning statistics technology. From 2000 to 2018, PWD in the study area showed an “increasing-decreasing-increasing” trend, and PWD increased explosively in 2018. The spatial spread of PWD showed a “jumping propagation-multi-point outbreak-point to surface spread” pattern, moving west along the river. Important clusters were concentrated in the Jiangsu-Zhejiang area from 2000 to 2015, forming a cluster including Jiangsu and Zhejiang. Then, from 2015–2018, important clusters were concentrated in Chongqing. According to the spatiotemporal scanning results, PWD showed high aggregation in the four regions of Zhejiang, Chongqing, Hubei, and Jiangxi from 2000 to 2018. In the future, management systems for the prevention and treatment of PWD, including ecological restoration programs, will require more attention.


2021 ◽  
Vol 13 (15) ◽  
pp. 3023
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin ◽  
Lei Gu ◽  
Feng Xiong

Flooding is one of the most widespread and frequent weather-related hazards that has devastating impacts on the society and ecosystem. Monitoring flooding is a vital issue for water resources management, socioeconomic sustainable development, and maintaining life safety. By integrating multiple precipitation, evapotranspiration, and GRACE-Follow On (GRAFO) terrestrial water storage anomaly (TWSA) datasets, this study uses the water balance principle coupled with the CaMa-Flood hydrodynamic model to access the spatiotemporal discharge variations in the Yangtze River basin during the 2020 catastrophic flood. The results show that: (1) TWSA bias dominates the overall uncertainty in runoff at the basin scale, which is spatially governed by uncertainty in TWSA and precipitation; (2) spatially, a field significance at the 5% level is discovered for the correlations between GRAFO-based runoff and GLDAS results. The GRAFO-derived discharge series has a high correlation coefficient with either in situ observations and hydrological simulations for the Yangtze River basin, at the 0.01 significance level; (3) the GRAFO-derived discharge observes the flood peaks in July and August and the recession process in October 2020. Our developed approach provides an alternative way of monitoring large-scale extreme hydrological events with the latest GRAFO release and CaMa-Flood model.


2013 ◽  
Vol 116 (3-4) ◽  
pp. 447-461 ◽  
Author(s):  
Yongqin David Chen ◽  
Qiang Zhang ◽  
Mingzhong Xiao ◽  
Vijay P. Singh ◽  
Yee Leung ◽  
...  

2013 ◽  
Vol 17 (5) ◽  
pp. 1985-2000 ◽  
Author(s):  
Y. Huang ◽  
M. S. Salama ◽  
M. S. Krol ◽  
R. van der Velde ◽  
A. Y. Hoekstra ◽  
...  

Abstract. In this study, we analyze 32 yr of terrestrial water storage (TWS) data obtained from the Interim Reanalysis Data (ERA-Interim) and Noah model from the Global Land Data Assimilation System (GLDAS-Noah) for the period 1979 to 2010. The accuracy of these datasets is validated using 26 yr (1979–2004) of runoff data from the Yichang gauging station and comparing them with 32 yr of independent precipitation data obtained from the Global Precipitation Climatology Centre Full Data Reanalysis Version 6 (GPCC) and NOAA's PRECipitation REConstruction over Land (PREC/L). Spatial and temporal analysis of the TWS data shows that TWS in the Yangtze River basin has decreased significantly since the year 1998. The driest period in the basin occurred between 2005 and 2010, and particularly in the middle and lower Yangtze reaches. The TWS figures changed abruptly to persistently high negative anomalies in the middle and lower Yangtze reaches in 2004. The year 2006 is identified as major inflection point, at which the system starts exhibiting a persistent decrease in TWS. Comparing these TWS trends with independent precipitation datasets shows that the recent decrease in TWS can be attributed mainly to a decrease in the amount of precipitation. Our findings are based on observations and modeling datasets and confirm previous results based on gauging station datasets.


Sign in / Sign up

Export Citation Format

Share Document