scholarly journals Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 866
Author(s):  
Hamid Mehmood ◽  
Crystal Conway ◽  
Duminda Perera

The Earth Observation (EO) domain can provide valuable information products that can significantly reduce the cost of mapping flood extent and improve the accuracy of mapping and monitoring systems. In this study, Landsat 5, 7, and 8 were utilized to map flood inundation areas. Google Earth Engine (GEE) was used to implement Flood Mapping Algorithm (FMA) and process the Landsat data. FMA relies on developing a “data cube”, which is spatially overlapped pixels of Landsat 5, 7, and 8 imagery captured over a period of time. This data cube is used to identify temporary and permanent water bodies using the Modified Normalized Difference Water Index (MNDWI) and site-specific elevation and land use data. The results were assessed by calculating a confusion matrix for nine flood events spread over the globe. The FMA had a high true positive accuracy ranging from 71–90% and overall accuracy in the range of 74–89%. In short, observations from FMA in GEE can be used as a rapid and robust hindsight tool for mapping flood inundation areas, training AI models, and enhancing existing efforts towards flood mitigation, monitoring, and management.

Author(s):  
Rajashree Naik ◽  
L.K. Sharma

Globally, saline lakes occupying 23% by area 44% by volume among all the lakes might desiccate by 2025 due to agricultural diversion, illegal encroachment, pollution, and invasive species. India’s largest saline lake, Sambhar is currently shrinking at the rate of 4.23% due to illegal saltpan en-croachment. This research article aims to identify the trend of migratory birds and monthly wetland status. Birds survey was conducted for 2019, 2020 and 2021 and combined with literature data of 1994, 2003, and 2013 for visiting trend, feeding habit, migratory and resident ratio, and ecological diversity index analysis. Normalized Difference Water Index was scripted in Google Earth Engine. Results state that it has been suitable for 97 species. Highest NDWI values for the was whole study period was 0.71 in 2021 and lowest 0.008 in 2019 which is highly fluctuating. The decreasing trend of migratory birds coupled with decreasing water level indicates the dubious status for its existence. If the causal factors are not checked, it might completely desiccate by 2059 as per its future prediction. Certain steps are suggested that might help conservation. Least, the cost of restoration might exceed the revenue generation.


Author(s):  
◽  
Carla Isoneide Araújo da Silva ◽  

Dados precisos sobre a distribuição e características de pequenas barragens são importantes para fins de gestão de emergências e planejamento de recursos hídricos em bacia hidrográfica e para auxiliar o monitoramento de indicadores do Objetivo de Desenvolvimento Sustentável (ODS) 6, sobre o uso e disponibilidade dos recursos hídricos e a implementação da gestão integrada dos recursos hídricos em todos os níveis. É necessário, assim, um sistema simplificado que auxilie no processo de identificação e classificação dessas pequenas barragens. Nesse contexto, a proposta deste estudo é identificar a presença de pequenos reservatórios através de imagens do MSI/Sentinel-2 entre janeiro e dezembro de 2020 e elaborar um Grau de Hierarquização (GR) para ações de fiscalização dos órgãos gestores. Foram utilizados para identificação o Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index e o método de transformação de espaço de cores RGB para HSV. O software QGIS versão 3.10 e o Google Earth Engine foram utilizados para o processamento das imagens e composição dos mapas apresentados. Os resultados comprovaram que o método HSV apresentou melhor resultado na identificação dos alvos propostos. A partir da aplicação do GR a uma pequena barragem de água, foi possível avaliar o seu nível de risco potencial e propor uma escala de prioridade para ações de fiscalização. Por fim, pode-se concluir que o GR pode auxiliar na tomada de decisão, fornecendo aos órgãos públicos uma ferramenta de fácil utilização para avaliar a prioridade de ação em pequenos barramentos.


Author(s):  
E. Panidi ◽  
I. Rykin ◽  
P. Kikin ◽  
A. Kolesnikov

Abstract. Our context research is conducted to investigate the possibility of common application of the remote sensing and ground-based monitoring data to detection and observation of the dynamics and change in climate and vegetation cover parameters. We applied the analysis of the annual graphs of Normalized Difference Water Index to estimate the length and time frames of growing seasons. Basing on previously gained results, we concluded that we can use the Index-based monitoring of growing season parameters as a relevant technique. We are working on automation of computations that can be applied to processing satellite imagery, computing Normalized Difference Water Index time series (in the forms of maps and annual graphs), and estimation of growing season parameters. As currently used data amounts are big (or up-to-big) geospatial data, we use the Google Earth Engine platform to process initial datasets. Our currently described experimental work incorporates investigation of the possibilities for integration of cloud computing data storage and processing with client-side data representation in universal desktop GISs. To ensure our study needs we developed a prototype of a QGIS plugin capable to run processing in GEE and represent results in QGIS.


2020 ◽  
Vol 12 (17) ◽  
pp. 2692
Author(s):  
Zhiqi Yu ◽  
Liping Di ◽  
Md. Shahinoor Rahman ◽  
Junmei Tang

Inland aquaculture in Bangladesh has been growing fast in the last decade. The underlying land use/land cover (LULC) change is an important indicator of socioeconomic and food structure change in Bangladesh, and fishpond mapping is essential to understand such LULC change. Previous research often used water indexes (WI), such as Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), to enhance water bodies and use shape-based metrics to assist classification of individual water features, such as coastal aquaculture ponds. However, inland fishponds in Bangladesh are generally extremely small, and little research has investigated mapping of such small water objects without high-resolution images. Thus, this research aimed to bridge the knowledge gap by developing and evaluating an automatic fishpond mapping workflow with Sentinel-2 images that is implemented on Google Earth Engine (GEE) platform. The workflow mainly includes two steps: (1) the spectral filtering phase that uses a pixel selection technique and an image segmentation method to automatically identify all-year-inundated water bodies and (2) spatial filtering phase to further classify all-year-inundated water bodies into fishponds and non-fishponds using object-based features (OBF). To evaluate the performance of the workflow, we conducted a case study in the Singra Upazila of Bangladesh, and our method can efficiently map inland fishponds with a precision score of 0.788. Our results also show that the pixel selection technique is essential in identifying inland fishponds that are generally small. As the workflow is implemented on GEE, it can be conveniently applied to other regions.


2020 ◽  
Author(s):  
Dan Li ◽  
Baosheng Wu ◽  
Bowei Chen ◽  
Yanjun Wang ◽  
Yi Zhang ◽  
...  

<p><strong>Abstract:</strong> Water plays a vital role in plants, animals and human survival, as well as water resources planning and protection. The spatial and temporal changes of rivers have a profound impact on climate change and the scientific protection of the regional ecological environment in Qingzang-Tibet plateau. Due to the influence of snow and cloud cover, optical remote sensing images in this region have less effective coverage. Many researches in the past mainly faced the challenge of misclassification caused by shadows from cloud and mountain. In this study, we proposed a method to improve the extraction of rivers by reducing the effect of shadows by fusing Sentinel-1 radar data and Sentinel-2 optical imagery. For the optical imagery, water indices including MNDWI (Modified Normalized Difference Water Index) and RNDWI (Revised Normalized Difference Water Index) and morphological operations were used to extract the river coverage. In addition, radar data is used to extract water in areas where there is no optical image coverage or where optical images are misclassified by using a combination of both the histogram and Otsu threshold methods. The GEE (Google Earth Engine) platform is used to implement the analysis using two classification datasets at a regional level. Relevant results from Sentinel-1 and Sentinel-2 data showed that the RNDWI has a more accurate water extraction results in this region. We further compared the final river width results with the manually measured samples from Google Earth and situ data of hydrological stations for accuracy assessment. The R<sup>2 </sup>value is 0.90, and the standard deviation is 18.663m. The river width can be estimated well by this method, which can provide basic data for the study of water in depopulated zone.</p><p><strong>Keywords: </strong>Remote sensing, shadow removal, water extraction, water index, Otsu threshold, Google Earth Engine</p>


2020 ◽  
Vol 12 (10) ◽  
pp. 1614
Author(s):  
András Gulácsi ◽  
Ferenc Kovács

Saline wetlands experience large temporal fluctuations in water supply during the year and are recharged only or mainly through precipitation, meaning they are vulnerable to climate-change-induced aridification. Most passive satellite sensors are unsuitable for continuous wetland monitoring due to cloud cover and their relatively low temporal resolution. However, active satellite sensors such as the C-band synthetic aperture radar of Sentinel-1 satellites offer free, cloud-independent data. We examined surface water cover changes from October 2014 to November 2018 in the strictly protected area (13,000 ha) of the Upper-Kiskunság Alkaline Lakes region in the Danube–Tisza Interfluve in Hungary, with the aim of helping with nature protection planning. Changes and sensitivity can be defined based on the knowledge of variability. We developed a method for water cover detection based on automatic classification, applying the so-called WEKA K-Means clustering algorithm. For satellite data processing and analysis, we used the Google Earth Engine cloud processing platform. In terms of validation, we compared our results with the multispectral Modified Normalized Difference Water Index (MNDWI) derived from Landsat 8 and Sentinel-2 top-of-atmosphere reflectance images using a threshold-based binary classifier (receiver operator characteristics) for the MNDWI data. Using two completely distinct methods operating in distinct wavelength ranges, we obtained adequately matching results, with Spearman’s correlation coefficients (ρ) ranging from 0.54 to 0.80.


2021 ◽  
Vol 13 (12) ◽  
pp. 2299
Author(s):  
Andrea Tassi ◽  
Daniela Gigante ◽  
Giuseppe Modica ◽  
Luciano Di Martino ◽  
Marco Vizzari

With the general objective of producing a 2018–2020 Land Use/Land Cover (LULC) map of the Maiella National Park (central Italy), useful for a future long-term LULC change analysis, this research aimed to develop a Landsat 8 (L8) data composition and classification process using Google Earth Engine (GEE). In this process, we compared two pixel-based (PB) and two object-based (OB) approaches, assessing the advantages of integrating the textural information in the PB approach. Moreover, we tested the possibility of using the L8 panchromatic band to improve the segmentation step and the object’s textural analysis of the OB approach and produce a 15-m resolution LULC map. After selecting the best time window of the year to compose the base data cube, we applied a cloud-filtering and a topography-correction process on the 32 available L8 surface reflectance images. On this basis, we calculated five spectral indices, some of them on an interannual basis, to account for vegetation seasonality. We added an elevation, an aspect, a slope layer, and the 2018 CORINE Land Cover classification layer to improve the available information. We applied the Gray-Level Co-Occurrence Matrix (GLCM) algorithm to calculate the image’s textural information and, in the OB approaches, the Simple Non-Iterative Clustering (SNIC) algorithm for the image segmentation step. We performed an initial RF optimization process finding the optimal number of decision trees through out-of-bag error analysis. We randomly distributed 1200 ground truth points and used 70% to train the RF classifier and 30% for the validation phase. This subdivision was randomly and recursively redefined to evaluate the performance of the tested approaches more robustly. The OB approaches performed better than the PB ones when using the 15 m L8 panchromatic band, while the addition of textural information did not improve the PB approach. Using the panchromatic band within an OB approach, we produced a detailed, 15-m resolution LULC map of the study area.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253209
Author(s):  
Jianfeng Li ◽  
Biao Peng ◽  
Yulu Wei ◽  
Huping Ye

To realize the accurate extraction of surface water in complex environment, this study takes Sri Lanka as the study area owing to the complex geography and various types of water bodies. Based on Google Earth engine and Sentinel-2 images, an automatic water extraction model in complex environment(AWECE) was developed. The accuracy of water extraction by AWECE, NDWI, MNDWI and the revised version of multi-spectral water index (MuWI-R) models was evaluated from visual interpretation and quantitative analysis. The results show that the AWECE model could significantly improve the accuracy of water extraction in complex environment, with an overall accuracy of 97.16%, and an extremely low omission error (0.74%) and commission error (2.35%). The AEWCE model could effectively avoid the influence of cloud shadow, mountain shadow and paddy soil on water extraction accuracy. The model can be widely applied in cloudy, mountainous and other areas with complex environments, which has important practical significance for water resources investigation, monitoring and protection.


PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0237324 ◽  
Author(s):  
Varun Tiwari ◽  
Vinay Kumar ◽  
Mir Abdul Matin ◽  
Amrit Thapa ◽  
Walter Lee Ellenburg ◽  
...  

Author(s):  
I. Rykin ◽  
E. Panidi ◽  
V. Tsepelev

<p><strong>Abstract.</strong> This article is based on NDWI (Normalized Difference Water Index) which is automatically computed from the daily MODIS data. The main purpose of the article is to tell how the evaluation of NDWI-based growing season estimations can be automated. The NDWI is used as an indicator of liquid water quantity in vegetation, which is less sensitive to atmospheric scattering effect then the famous growing index (NDVI). The NDWI is computed using cloud-based platform (Google Earth Engine was applied) and compared with the daily meteorological data. The available meteorological data is collected for the past 130 years and NDWI data is collecting for the past 20 years. An automated technique has been probated on the example of republic of Komi, as it has a different climate forming factors. This approach can be used to evaluate growing season estimations for other territories that contain vegetation. Due to the accumulated amount of data, the study is relevant and has a special significance for areas with sparse hydrometeorological network.</p>


Sign in / Sign up

Export Citation Format

Share Document