scholarly journals Pequenas barragens de água: definição do grau de hierarquização para fins de fiscalização.

Author(s):  
◽  
Carla Isoneide Araújo da Silva ◽  

Dados precisos sobre a distribuição e características de pequenas barragens são importantes para fins de gestão de emergências e planejamento de recursos hídricos em bacia hidrográfica e para auxiliar o monitoramento de indicadores do Objetivo de Desenvolvimento Sustentável (ODS) 6, sobre o uso e disponibilidade dos recursos hídricos e a implementação da gestão integrada dos recursos hídricos em todos os níveis. É necessário, assim, um sistema simplificado que auxilie no processo de identificação e classificação dessas pequenas barragens. Nesse contexto, a proposta deste estudo é identificar a presença de pequenos reservatórios através de imagens do MSI/Sentinel-2 entre janeiro e dezembro de 2020 e elaborar um Grau de Hierarquização (GR) para ações de fiscalização dos órgãos gestores. Foram utilizados para identificação o Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index e o método de transformação de espaço de cores RGB para HSV. O software QGIS versão 3.10 e o Google Earth Engine foram utilizados para o processamento das imagens e composição dos mapas apresentados. Os resultados comprovaram que o método HSV apresentou melhor resultado na identificação dos alvos propostos. A partir da aplicação do GR a uma pequena barragem de água, foi possível avaliar o seu nível de risco potencial e propor uma escala de prioridade para ações de fiscalização. Por fim, pode-se concluir que o GR pode auxiliar na tomada de decisão, fornecendo aos órgãos públicos uma ferramenta de fácil utilização para avaliar a prioridade de ação em pequenos barramentos.

2020 ◽  
Author(s):  
Dan Li ◽  
Baosheng Wu ◽  
Bowei Chen ◽  
Yanjun Wang ◽  
Yi Zhang ◽  
...  

<p><strong>Abstract:</strong> Water plays a vital role in plants, animals and human survival, as well as water resources planning and protection. The spatial and temporal changes of rivers have a profound impact on climate change and the scientific protection of the regional ecological environment in Qingzang-Tibet plateau. Due to the influence of snow and cloud cover, optical remote sensing images in this region have less effective coverage. Many researches in the past mainly faced the challenge of misclassification caused by shadows from cloud and mountain. In this study, we proposed a method to improve the extraction of rivers by reducing the effect of shadows by fusing Sentinel-1 radar data and Sentinel-2 optical imagery. For the optical imagery, water indices including MNDWI (Modified Normalized Difference Water Index) and RNDWI (Revised Normalized Difference Water Index) and morphological operations were used to extract the river coverage. In addition, radar data is used to extract water in areas where there is no optical image coverage or where optical images are misclassified by using a combination of both the histogram and Otsu threshold methods. The GEE (Google Earth Engine) platform is used to implement the analysis using two classification datasets at a regional level. Relevant results from Sentinel-1 and Sentinel-2 data showed that the RNDWI has a more accurate water extraction results in this region. We further compared the final river width results with the manually measured samples from Google Earth and situ data of hydrological stations for accuracy assessment. The R<sup>2 </sup>value is 0.90, and the standard deviation is 18.663m. The river width can be estimated well by this method, which can provide basic data for the study of water in depopulated zone.</p><p><strong>Keywords: </strong>Remote sensing, shadow removal, water extraction, water index, Otsu threshold, Google Earth Engine</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253209
Author(s):  
Jianfeng Li ◽  
Biao Peng ◽  
Yulu Wei ◽  
Huping Ye

To realize the accurate extraction of surface water in complex environment, this study takes Sri Lanka as the study area owing to the complex geography and various types of water bodies. Based on Google Earth engine and Sentinel-2 images, an automatic water extraction model in complex environment(AWECE) was developed. The accuracy of water extraction by AWECE, NDWI, MNDWI and the revised version of multi-spectral water index (MuWI-R) models was evaluated from visual interpretation and quantitative analysis. The results show that the AWECE model could significantly improve the accuracy of water extraction in complex environment, with an overall accuracy of 97.16%, and an extremely low omission error (0.74%) and commission error (2.35%). The AEWCE model could effectively avoid the influence of cloud shadow, mountain shadow and paddy soil on water extraction accuracy. The model can be widely applied in cloudy, mountainous and other areas with complex environments, which has important practical significance for water resources investigation, monitoring and protection.


Author(s):  
E. Panidi ◽  
I. Rykin ◽  
P. Kikin ◽  
A. Kolesnikov

Abstract. Our context research is conducted to investigate the possibility of common application of the remote sensing and ground-based monitoring data to detection and observation of the dynamics and change in climate and vegetation cover parameters. We applied the analysis of the annual graphs of Normalized Difference Water Index to estimate the length and time frames of growing seasons. Basing on previously gained results, we concluded that we can use the Index-based monitoring of growing season parameters as a relevant technique. We are working on automation of computations that can be applied to processing satellite imagery, computing Normalized Difference Water Index time series (in the forms of maps and annual graphs), and estimation of growing season parameters. As currently used data amounts are big (or up-to-big) geospatial data, we use the Google Earth Engine platform to process initial datasets. Our currently described experimental work incorporates investigation of the possibilities for integration of cloud computing data storage and processing with client-side data representation in universal desktop GISs. To ensure our study needs we developed a prototype of a QGIS plugin capable to run processing in GEE and represent results in QGIS.


2020 ◽  
Vol 12 (17) ◽  
pp. 2692
Author(s):  
Zhiqi Yu ◽  
Liping Di ◽  
Md. Shahinoor Rahman ◽  
Junmei Tang

Inland aquaculture in Bangladesh has been growing fast in the last decade. The underlying land use/land cover (LULC) change is an important indicator of socioeconomic and food structure change in Bangladesh, and fishpond mapping is essential to understand such LULC change. Previous research often used water indexes (WI), such as Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), to enhance water bodies and use shape-based metrics to assist classification of individual water features, such as coastal aquaculture ponds. However, inland fishponds in Bangladesh are generally extremely small, and little research has investigated mapping of such small water objects without high-resolution images. Thus, this research aimed to bridge the knowledge gap by developing and evaluating an automatic fishpond mapping workflow with Sentinel-2 images that is implemented on Google Earth Engine (GEE) platform. The workflow mainly includes two steps: (1) the spectral filtering phase that uses a pixel selection technique and an image segmentation method to automatically identify all-year-inundated water bodies and (2) spatial filtering phase to further classify all-year-inundated water bodies into fishponds and non-fishponds using object-based features (OBF). To evaluate the performance of the workflow, we conducted a case study in the Singra Upazila of Bangladesh, and our method can efficiently map inland fishponds with a precision score of 0.788. Our results also show that the pixel selection technique is essential in identifying inland fishponds that are generally small. As the workflow is implemented on GEE, it can be conveniently applied to other regions.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 866
Author(s):  
Hamid Mehmood ◽  
Crystal Conway ◽  
Duminda Perera

The Earth Observation (EO) domain can provide valuable information products that can significantly reduce the cost of mapping flood extent and improve the accuracy of mapping and monitoring systems. In this study, Landsat 5, 7, and 8 were utilized to map flood inundation areas. Google Earth Engine (GEE) was used to implement Flood Mapping Algorithm (FMA) and process the Landsat data. FMA relies on developing a “data cube”, which is spatially overlapped pixels of Landsat 5, 7, and 8 imagery captured over a period of time. This data cube is used to identify temporary and permanent water bodies using the Modified Normalized Difference Water Index (MNDWI) and site-specific elevation and land use data. The results were assessed by calculating a confusion matrix for nine flood events spread over the globe. The FMA had a high true positive accuracy ranging from 71–90% and overall accuracy in the range of 74–89%. In short, observations from FMA in GEE can be used as a rapid and robust hindsight tool for mapping flood inundation areas, training AI models, and enhancing existing efforts towards flood mitigation, monitoring, and management.


2021 ◽  
Vol 10 (9) ◽  
pp. 587
Author(s):  
Yan Guo ◽  
Haoming Xia ◽  
Li Pan ◽  
Xiaoyang Zhao ◽  
Rumeng Li ◽  
...  

Cropping intensity is a key indicator for evaluating grain production and intensive use of cropland. Timely and accurately monitoring of cropping intensity is of great significance for ensuring national food security and improving the level of national land management. In this study, we used all Sentinel-2 images on the Google Earth Engine cloud platform, and constructed an improved peak point detection method to extract the cropping intensity of a heterogeneous planting area combined with crop phenology. The crop growth cycle profiles were extracted from the multi-temporal normalized difference vegetation index (NDVI) and land surface water index (LSWI) datasets. Results show that by 2020, the area of single cropping, double cropping, and triple cropping in the Henan Province are 52,236.9 km2, 74,334.1 km2, and 1927.1 km2, respectively; the corresponding producer accuracies are 86.12%, 93.72%, and 91.41%, respectively; the corresponding user accuracies are 88.99%, 92.29%, and 71.26%, respectively. The overall accuracy is 90.95%, and the Kappa coefficient is 0.81. Using the sown area in the statistical yearbook data of cities in the Henan Province to verify the extraction results of this paper, the R2 is 0.9717, and the root mean square error is 1715.9 km2. This study shows that using all the Sentinel-2 data, the phenology algorithm, and cloud computing technology has great potential in producing a high spatio-temporal resolution dataset for crop remote sensing monitoring and agricultural policymaking in complex planting areas.


2020 ◽  
Vol 12 (10) ◽  
pp. 1614
Author(s):  
András Gulácsi ◽  
Ferenc Kovács

Saline wetlands experience large temporal fluctuations in water supply during the year and are recharged only or mainly through precipitation, meaning they are vulnerable to climate-change-induced aridification. Most passive satellite sensors are unsuitable for continuous wetland monitoring due to cloud cover and their relatively low temporal resolution. However, active satellite sensors such as the C-band synthetic aperture radar of Sentinel-1 satellites offer free, cloud-independent data. We examined surface water cover changes from October 2014 to November 2018 in the strictly protected area (13,000 ha) of the Upper-Kiskunság Alkaline Lakes region in the Danube–Tisza Interfluve in Hungary, with the aim of helping with nature protection planning. Changes and sensitivity can be defined based on the knowledge of variability. We developed a method for water cover detection based on automatic classification, applying the so-called WEKA K-Means clustering algorithm. For satellite data processing and analysis, we used the Google Earth Engine cloud processing platform. In terms of validation, we compared our results with the multispectral Modified Normalized Difference Water Index (MNDWI) derived from Landsat 8 and Sentinel-2 top-of-atmosphere reflectance images using a threshold-based binary classifier (receiver operator characteristics) for the MNDWI data. Using two completely distinct methods operating in distinct wavelength ranges, we obtained adequately matching results, with Spearman’s correlation coefficients (ρ) ranging from 0.54 to 0.80.


Author(s):  
Rajashree Naik ◽  
L.K. Sharma

Globally, saline lakes occupying 23% by area 44% by volume among all the lakes might desiccate by 2025 due to agricultural diversion, illegal encroachment, pollution, and invasive species. India’s largest saline lake, Sambhar is currently shrinking at the rate of 4.23% due to illegal saltpan en-croachment. This research article aims to identify the trend of migratory birds and monthly wetland status. Birds survey was conducted for 2019, 2020 and 2021 and combined with literature data of 1994, 2003, and 2013 for visiting trend, feeding habit, migratory and resident ratio, and ecological diversity index analysis. Normalized Difference Water Index was scripted in Google Earth Engine. Results state that it has been suitable for 97 species. Highest NDWI values for the was whole study period was 0.71 in 2021 and lowest 0.008 in 2019 which is highly fluctuating. The decreasing trend of migratory birds coupled with decreasing water level indicates the dubious status for its existence. If the causal factors are not checked, it might completely desiccate by 2059 as per its future prediction. Certain steps are suggested that might help conservation. Least, the cost of restoration might exceed the revenue generation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 11 (9) ◽  
pp. 4258
Author(s):  
Jordan R. Cissell ◽  
Steven W. J. Canty ◽  
Michael K. Steinberg ◽  
Loraé T. Simpson

In this paper, we present the highest-resolution-available (10 m) national map of the mangrove ecosystems of Belize. These important ecosystems are increasingly threatened by human activities and climate change, support both marine and terrestrial biodiversity, and provide critical ecosystem services to coastal communities in Belize and throughout the Mesoamerican Reef ecoregion. Previous national- and international-level inventories document Belizean mangrove forests at spatial resolutions of 30 m or coarser, but many mangrove patches and loss events may be too small to be accurately mapped at these resolutions. Our 10 m map addresses this need for a finer-scale national mangrove inventory. We mapped mangrove ecosystems in Belize as of 2020 by performing a random forest classification of Sentinel-2 Multispectral Instrument imagery in Google Earth Engine. We mapped a total mangrove area of 578.54 km2 in 2020, with 372.04 km2 located on the mainland and 206.50 km2 distributed throughout the country’s islands and cayes. Our findings are substantially different from previous, coarser-resolution national mangrove inventories of Belize, which emphasizes the importance of high-resolution mapping efforts for ongoing conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document