scholarly journals Study on Air Pollution Behavior of VOCs with Photochemical Monitoring Stations Using EGARCH Model in Southern Taiwan

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1167
Author(s):  
Edward Ming-Yang Wu ◽  
Shu-Lung Kuo

This study adopted the exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model to examine the 10 ozone precursors of the highest concentrations among the 54 that were assessed over a number of years at the four photochemical assessment monitoring stations (PAMSs) in the Kaohsiung–Pingtung Area in Taiwan. First, the 10 ozone precursors, which were all volatile organic compounds (VOCs), were analyzed using the factor analyses in multiple statistical analyses that had the most significant impact on the area’s ozone formation: mobile pollution factor, which included 1,2,4-Trimethylbenzene (C9H12), toluene (C7H8), and Isopropyl benzene (C9H12). Then, taking into consideration that the number sequences might be affected by standardized residuals, this study applied the vector autoregressive moving average-EGARCH (VARMA-EGARCH) model to analyze the correlation between the three VOCs under different polluting activities. The VARMA-EGARCH model in this research included dummy variables representing changing points of variance structures in the variance formula to predict the conditional variance. This process proved able to effectively estimate the relevant coefficients of the three VOCs’ dynamic conditions that changed with time. The model also helped to prevent errors from occurring when estimating the conditional variance. Based on the testing results, this study determined the VARMA(2,1)-EGARCH(1,0) as the most suitable model for exploring the correlation between the three VOCs and meteorological phenomena, as well as the interplay between them in regard to interaction and formation. With the most representative of the three, toluene (TU), as the dependent variable and 1,2,4-Trimethylbenzene (TB) and Isopropyl benzene (IB) as the independent variables, this study found it impossible to calculate the TU concentration with TB and IB concentrations in the same period; estimations of TB and IB concentrations with a period of lag time were required because TU was mainly contributed by automobiles and motorcycles in Kaohsiung. TB and IB resulted from other stationary pollution sources in the region besides cars and motorbikes. When TU was evenly distributed and stayed longer in the atmosphere, the TB and IB concentrations were lower, so distribution conditions and concentrations could not be used to effectively estimate the concentration of toluene. This study had to wait until the next period, or when stationary pollution sources started producing TB and IB of higher concentrations during the daytime, in order to estimate the TU concentrations in a better photochemical situation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Szabolcs Blazsek ◽  
Alvaro Escribano ◽  
Adrian Licht

Abstract A new class of multivariate nonlinear quasi-vector autoregressive (QVAR) models is introduced. It is a Markov switching score-driven model with stochastic seasonality for the multivariate t-distribution (MS-Seasonal-t-QVAR). As an extension, we allow for the possibility of having common-trends and nonlinear co-integration. Score-driven nonlinear updates of local level and seasonality are used, which are robust to outliers within each regime. We show that VAR integrated moving average (VARIMA) type filters are special cases of QVAR filters. Using exclusion, sign, and elasticity identification restrictions in MS-Seasonal-t-QVAR with common-trends, we provide short-run and long-run impulse response functions for the global crude oil market.



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua C. C. Chan ◽  
Eric Eisenstat ◽  
Gary Koop

AbstractThis paper is about identifying structural shocks in noisy-news models using structural vector autoregressive moving average (SVARMA) models. We develop a new identification scheme and efficient Bayesian methods for estimating the resulting SVARMA. We discuss how our identification scheme differs from the one which is used in existing theoretical and empirical models. Our main contributions lie in the development of methods for choosing between identification schemes. We estimate specifications with up to 20 variables using US macroeconomic data. We find that our identification scheme is preferred by the data, particularly as the size of the system is increased and that noise shocks generally play a negligible role. However, small models may overstate the importance of noise shocks.



2017 ◽  
Vol 12 (03) ◽  
pp. 1750012 ◽  
Author(s):  
MUSTAFA GÜLERCE ◽  
GAZANFER ÜNAL

The aim of this paper is to show that the estimates made with vector autoregressive–moving-average (ARMA) models based on the coherent time intervals of the multiple time series give more precise results than the univariate case. The previous literature on dynamic correlations (co-movement) in between food and energy prices has mixed results and mainly based on parametric approaches. Therefore, partial wavelet coherence (PWC) and multiple wavelet coherence (MWC) methods are used, respectively, to uncover the coherency simultaneously for time and frequency domains. In our study; world oil, corn, soybeans, wheat and sugar prices are examined instead of the return and volatility relationship between oil and agricultural commodities due to model-free approach of wavelet analysis.



J ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 508-560
Author(s):  
Riccardo Corradini

Normally, econometric models that forecast the Italian Industrial Production Index do not exploit information already available at time t + 1 for their own main industry groupings. The new strategy proposed here uses state–space models and aggregates the estimates to obtain improved results. The performance of disaggregated models is compared at the same time with a popular benchmark model, a univariate model tailored on the whole index, with persistent not formally registered holidays, a vector autoregressive moving average model exploiting all information published on the web for main industry groupings. Tests for superior predictive ability confirm the supremacy of the aggregated forecasts over three steps horizon using absolute forecast error and quadratic forecast error as a loss function. The datasets are available online.



2021 ◽  
pp. 1-21
Author(s):  
Szabolcs Blazsek ◽  
Alvaro Escribano ◽  
Adrian Licht

Abstract Nonlinear co-integration is studied for score-driven models, using a new multivariate dynamic conditional score/generalized autoregressive score model. The model is named t-QVARMA (quasi-vector autoregressive moving average model), which is a location model for the multivariate t-distribution. In t-QVARMA, I(0) and co-integrated I(1) components of the dependent variables are included. For t-QVARMA, the conditions of the maximum likelihood estimator and impulse response functions (IRFs) are presented. A limiting special case of t-QVARMA, named Gaussian-QVARMA, is a Gaussian-VARMA specification with I(0) and I(1) components. As an empirical application, the US real gross domestic product growth, US inflation rate, and effective federal funds rate are studied for the period of 1954 Q3 to 2020 Q2. Statistical performance and predictive accuracy of t-QVARMA are superior to those of Gaussian-VAR. Estimates of the short-run IRF, long-run IRF, and total IRF impacts for the US data are reported.



Author(s):  
Xia Cai

Aiming to improve the performance of existing reversion based online portfolio selection strategies, we propose a novel multi-period strategy named “Vector Autoregressive Weighting Reversion” (VAWR). Firstly, vector autoregressive moving-average algorithm used in time series prediction is transformed into exploring the dynamic relationships between different assets for more accurate price prediction. Secondly, we design the modified online passive aggressive technique and advance a scheme to weigh investment risk and cumulative experience to update the closed-form of portfolio. Theoretical analysis and experimental results confirm the effectiveness and robustness of our strategy. Compared with the state-of-the-art strategies, VAWR greatly increases cumulative wealth, and it obtains the highest annualized percentage yield and sharp ratio on various public datasets. These improvements and easy implementation support the practical applications of VAWR.



2021 ◽  
Vol 16 (3) ◽  
pp. 197-210
Author(s):  
Utriweni Mukhaiyar ◽  
Devina Widyanti ◽  
Sandy Vantika

This study aims to determine the impact of COVID-19 cases in Indonesia on the USD/IDR exchange rate using the Transfer Function Model and Vector Autoregressive Moving-Average with Exogenous Regressors (VARMAX) Model. This paper uses daily data on the COVID-19 case in Indonesia, the USD/IDR exchange rate, and the IDX Composite period from 1 March to 29 June 2020. The analysis shows: (1) the higher the increase of the number of COVID-19 cases in Indonesia will significantly weaken the USD/IDR exchange rate, (2) an increase of 1% in the number of COVID-19 cases in Indonesia six days ago will weaken the USD/IDR exchange rate by 0.003%, (3) an increase of 1% in the number of COVID-19 cases in Indonesia seven days ago will weaken the USD/IDR exchange rate by 0.17%, and (4) an increase of 1% in the number of COVID-19 cases in Indonesia eight days ago will weaken the USD/IDR exchange rate by 0.24%.



Econometrics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 42
Author(s):  
Dietmar Bauer ◽  
Lukas Matuschek ◽  
Patrick de Matos Ribeiro ◽  
Martin Wagner

We develop and discuss a parameterization of vector autoregressive moving average processes with arbitrary unit roots and (co)integration orders. The detailed analysis of the topological properties of the parameterization—based on the state space canonical form of Bauer and Wagner (2012)—is an essential input for establishing statistical and numerical properties of pseudo maximum likelihood estimators as well as, e.g., pseudo likelihood ratio tests based on them. The general results are exemplified in detail for the empirically most relevant cases, the (multiple frequency or seasonal) I(1) and the I(2) case. For these two cases we also discuss the modeling of deterministic components in detail.



Sign in / Sign up

Export Citation Format

Share Document