scholarly journals Nitrous Oxide Emission Fluxes in Coffee Plantations during Fertilization: A Case Study in Costa Rica

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1656
Author(s):  
Macarena San Martin Ruiz ◽  
Martin Reiser ◽  
Martin Kranert

The main source of N2O emissions is agriculture, and coffee monocultures have become an important part of these emissions. The demand for coffee has increased in the last five decades. Thus, its production in agricultural fields and the excess of fertilizers have increased. This study quantified N2O emissions from different dose applications and types of nitrogen fertilizer in a region of major coffee production in Costa Rica. A specific methodology to measure N2O fluxes from coffee plants was developed using Fourier-transform infrared spectroscopy (FTIR). Measurements were performed in a botanical garden in Germany and plots in Costa Rica, analyzing the behavior of a fertilizer in two varieties of coffee (Catuai and Geisha), and in a field experiment, testing two types of fertilizers (chemical (F1) and physical mixture (F2)) and compost (SA). As a result, the additions of synthetic fertilizer increased the N2O fluxes. F2 showed higher emissions than F1 by up to 90% in the field experiment, and an increase in general emissions occurred after a rain event in the coffee plantation. The weak levels of N2O emissions were caused by a rainfall deficit, maintaining low water content in the soil. Robust research is suggested for the inventories.

2009 ◽  
Vol 41 (11) ◽  
pp. 2343-2355 ◽  
Author(s):  
Kristell Hergoualc'h ◽  
Jean-Michel Harmand ◽  
Patrice Cannavo ◽  
Ute Skiba ◽  
Robert Oliver ◽  
...  

2018 ◽  
Vol 29 (1) ◽  
pp. 193
Author(s):  
Walter Peraza-Padilla ◽  
Martha Orozco-Aceves

There is potential for weeds to be alternative hosts of plant-parasitic nematodes (PPN), but a methodology that assesses the phytosanitary risk derived from the presence of weeds in plantations is not available. This research was conducted in order to determine if the presence of weeds in coffee plantations (organic and conventional) represented a phytosanitary risk due to their role as alternative hosts of PPN. The research was developed into two plantation located in Aserrí, San José, Costa Rica during August, 2010. The most important weeds were identified in the plantations, also nematodes of the genera Meloidogyne, Pratylenchus and Helicotylenchus were quantified in soil and roots from selected weeds and coffee plants. A permutational analysis of variance was executed in order to determine the genera of PPN that significantly differed from the ones found in weeds to the ones found in coffee plants. Based on these results, the weeds were classified as: reservoir, trap crop, or weak host of PPN. This classification criterion, in addition to life cycle and type of parasitism of the PPN were used to assign numerical values to the weeds. The values were used to calculate the Phytosanitary Risk Index (PRI) that acquired a maximum value of 10 for the weed Piper umbellatum in the organic plantation, and a maximum value of 24 for Commelina diffusa, Emilia fosbergii, Spananthe paniculata, Delilia biflora, and Spermacoce hirta in the conventional plantation. The results indicated that from a nematological perspective the presence of these weeds in coffee plantation could be a potential risk for coffee plants


Lankesteriana ◽  
2014 ◽  
Vol 13 (3) ◽  
Author(s):  
Carlos Ossenbach

Charles Herbert Lankester (1879-1969) was without a doubt the most dominant figure of Central American orchidology during his time. Better known as ‘Don Carlos’, Lankester was born in Southampton, England, on June 14 1879. It was in London that he read an announcement offering a position to work as an assistant to the recently founded Sarapiquí Coffee Estates Company in Costa Rica, he applied and was hired. Surely influenced by his uncle’s zoological background, Lankester was at first interested in birds and butterflies. However, living in Cachí, at that time one of the regions with the greatest botanical diversity, he must have fallen under the spell of the plant world as he soon began collecting orchids in the nearby woods. Many of the plants he collected at this time proved to be new species. With no literature at his hand to determine the plants he collected, Lankester started corresponding with the assistant director of the Royal Botanic Gardens at Kew, Arthur Hill in 1910, and somewhat later with Robert Allen Rolfe, Kew’s most eminent authority on orchids. At the same time, Lankester began his collection of living plants that would become so famous years later. He returned to England in 1920 to enroll his five children in English schools. Lankester traveled to Africa from 1920 to 1922, hired by the British Government to do research on coffee plantations in Uganda. When returning to England, he found that Rolfe had died the year before. Many orchids that he had brought to Kew were left without identification. Lankester was back in Costa Rica in 1922, the year that was a turning point in his career as an orchidologist: it brought the first correspondence with Oakes Ames. Over the next fifteen years, Ames would discover more than 100 new species among the specimens he received from Costa Rica. In 1922, Ames began a series of publications on orchids, which he named Schedulae Orchidianae. In its third fascicle, in January 1923, Ames started to describe many of the Lankester orchids, which were deposited at Kew and had been left unidentified. Ames kept asking Lankester to send more and more specimens. After 1930, Lankester and Ames seem to drift slowly apart. Ames was taken in more by administrative work at Harvard, and Lankester traveled abroad more frequently. In 1955, after his wife’s death and already 76 years old, Lankester decided to sell his farm but retained the small part which contained his garden, a piece of land called “El Silvestre”. Lankester moved to a house he had bought in Moravia, one of the suburbs of the capital, San José. On a section of this farm called “El Silvestre”, Lankester began his wonderful collections of orchids and plants of other families, which formed the basis of the Charles H. Lankester Botanical Garden of the University of Costa Rica.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Savannah S. Cooley ◽  
Christopher A. Williams ◽  
Joshua B. Fisher ◽  
Gregory H. Halverson ◽  
Johan Perret ◽  
...  

Author(s):  
Qi Wei ◽  
Junzeng Xu ◽  
Linxian Liao ◽  
Yawei Li ◽  
Haiyu Wang ◽  
...  

To reveal the effect of irrigation salinity on soil nitrous oxide (N2O) emission, pot experiments were designed with three irrigation salinity levels (NaCl and CaCl2 of 1, 2.5 and 4 g/L equivalence, Ec = 3.6, 8.1 and 12.7 ds/m), either for 0 kg N/ha (N0) or 120 kg N/ha (N120) nitrogen inputs. N2O emissions from soils irrigated at different salinity levels varied in a similar pattern which was triggered by soil moisture dynamics. Yet, the magnitudes of pulse N2O fluxes were significantly varied, with the peak flux at 5 g/L irrigation salinity level being much higher than at 2 and 8 g/L. Compared to fresh water irrigated soils, cumulative N2O fluxes were reduced by 22.7% and 39.6% (N0), 29.1% and 39.2% (N120) for soils irrigated with 2 and 8 g/L saline water, while they were increased by 87.7% (N0) and 58.3% (N120) for soils irrigated with 5 g/L saline water. These results suggested that the effect degree of salinity on consumption and production of N2O might vary among irrigation salinity ranges. As such, desalinating brackish water to a low salinity level (such as 2 g/L) before it is used for irrigation might be helpful for solving water resources crises and mitigating soil N2O emissions.


2013 ◽  
Vol 85 (2) ◽  
pp. 813-822 ◽  
Author(s):  
LEONARDO B. DE CARVALHO ◽  
PEDRO L.C.A. ALVES ◽  
STEPHEN O. DUKE

Weed management systems in almost all Brazilian coffee plantations allow herbicide spray to drift on crop plants. In order to evaluate if there is any effect of the most commonly used herbicide in coffee production, glyphosate, on coffee plants, a range of glyphosate doses were applied directly on coffee plants at two distinct plant growth stages. Although growth of both young and old plants was reduced at higher glyphosate doses, low doses caused no effects on growth characteristics of young plants and stimulated growth of older plants. Therefore, hormesis with glyphosate is dependent on coffee plant growth stage at the time of herbicide application.


2011 ◽  
Vol 4 (10) ◽  
pp. 2293-2303 ◽  
Author(s):  
R. J. Martin ◽  
A. M. Bromley ◽  
M. J. Harvey ◽  
R. C. Moss ◽  
E. Pattey ◽  
...  

Abstract. We describe the design and testing of a flexible bag ("Lung") accumulator attached to a gas chromatographic (GC) analyzer capable of measuring surface-atmosphere greenhouse gas exchange fluxes in a wide range of environmental/agricultural settings. In the design presented here, the Lung can collect up to three gas samples concurrently, each accumulated into a Tedlar bag over a period of 20 min or longer. Toggling collection between 2 sets of 3 bags enables quasi-continuous collection with sequential analysis and discarding of sample residues. The Lung thus provides a flexible "front end" collection system for interfacing to a GC or alternative analyzer and has been used in 2 main types of application. Firstly, it has been applied to micrometeorological assessment of paddock-scale N2O fluxes, discussed here. Secondly, it has been used for the automation of concurrent emission assessment from three sheep housed in metabolic crates with gas tracer addition and sampling multiplexed to a single GC. The Lung allows the same GC equipment used in laboratory discrete sample analysis to be deployed for continuous field measurement. Continuity of measurement enables spatially-averaged N2O fluxes in particular to be determined with greater accuracy, given the highly heterogeneous and episodic nature of N2O emissions. We present a detailed evaluation of the micrometeorological flux estimation alongside an independent tuneable diode laser system, reporting excellent agreement between flux estimates based on downwind vertical concentration differences. Whilst the current design is based around triplet bag sets, the basic design could be scaled up to a larger number of inlets or bags and less frequent analysis (longer accumulation times) where a greater number of sampling points are required.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


2011 ◽  
Vol 11 (17) ◽  
pp. 9333-9342 ◽  
Author(s):  
M. Kaleem Abbasi ◽  
C. Müller

Abstract. Long-term field observations showed that N2O fluxes observed shortly after N application were not significantly affected by elevated CO2 in the Giessen Free Air Carbon dioxide Enrichment (FACE) study. To further investigate this unexpected result a 15N tracer study was carried out under controlled conditions where in parallel treatments either the NH4+ pool (15NH4NO3) or the NO3− pool (NH415NO3) was enriched with 15N. Fluxes of CO2, CH4, and N2O as well as the 15N enrichment of the N2O were measured. Denitrifying Enzyme Activity (DEA), total denitrification (N2 + N2O) and N2-to-N2O ratios were quantified in separate experiments. Over the 57 day incubation, N2O fluxes averaged 0.090 ng N2O-N g−1 h−1 under ambient and 0.083 ng N2O-N g−1 h−1 under elevated CO2 (not significantly different). The N2O production processes were identified by a two-source model. Results showed that N2O must have also been produced by a third source – possibly related to organic N transformation – which was stimulated by elevated CO2. Soil CO2 fluxes were approximately 20 % higher under elevated CO2 than soil from ambient but the differences were not significant. CH4 oxidation rates were on average −1.75 ng CH4-C g−1 h−1 in the elevated and −1.17 ng CH4-C g−1 h−1 in the ambient indicating that elevated CO2 increased the CH4 oxidation by 49 % compared to ambient CO2 under controlled conditions. N fertilization increased CH4 oxidation by 3-fold in both CO2 treatments. CO2 did not have any significant effect on DEA while total denitrification and N2-to-N2O ratios increased by 36 and 33 %, respectively. The results indicate that shortly after N application elevated CO2 must have stimulated both the N2O production and reduction to N2 to explain the increased N2-to-N2O ratio and at the same time explain the non-responsiveness of the N2O emissions. Thus, the observed variation of the CO2 effect on N2O emissions throughout the year is possibly governed by the dynamics of the N2O reductase activity.


Sign in / Sign up

Export Citation Format

Share Document