scholarly journals A Multi-Year Study of GOES-13 Droplet Effective Radius Retrievals for Warm Clouds over South America and Southeast Pacific

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Alexandre L. Correia ◽  
Marina M. Mendonça ◽  
Thiago F. Nobrega Nobrega ◽  
Andre C. Pugliesi ◽  
Micael A. Cecchini

Geostationary satellites can retrieve the cloud droplet effective radius (re) but suffer biases from cloud inhomogeneities, internal retrieval nonlinearities, and 3-D scattering/shadowing from neighboring clouds, among others. A 1-D retrieval method was applied to Geostationary Operational Environmental Satellite 13 (GOES-13) imagery, over large areas in South America (+5∘ to −30∘ N5∘ N–30∘ S; −20∘ to −70∘E20∘–70∘ W), the Southeast Pacific (+5∘ to −30∘ N5∘ N–30∘ S; −70∘ to −120∘E70∘–120∘ W), and the Amazon (+2∘ to −7∘ N2∘ N–7∘ S; −54∘ to −73∘E54∘–73∘ W), for four months in each year from 2014–2017. Results were regressedcompared against in situ aircraft measurements and the Moderate Resolution Imaging Spectroradiometer cloud product for Terra and Aqua satellites. Monthly regression parameters approximately followed a seasonal pattern. With up to 108,009 of matchups, slope, intercept, and correlation for Terra (Aqua) ranged from about 0.71 to 1.17, −2.8 to 2.5 μm, and 0.61 to 0.91 (0.54 to 0.78, −1.5 to 1.8 μm, 0.63 to 0.89), respectively. We identified evidence for re overestimation (underestimation) correlated with shadowing (enhanced reflectance) in the forward (backscattering) hemisphere, and limitations to illumination/ and viewing configurations accessible by GOES-13, depending on the time of day and season. A proposition is hypothesized to ameliorate 3-D biases by studying relative illumination and cloud spatial inhomogeneity.

2017 ◽  
Vol 10 (6) ◽  
pp. 2105-2116 ◽  
Author(s):  
John Rausch ◽  
Kerry Meyer ◽  
Ralf Bennartz ◽  
Steven Platnick

Abstract. Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua–MODIS (Moderate Resolution Imaging Spectroradiometer) collections 5.1 (C5.1) and 6 (C6) cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1°  ×  1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS cloud product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above-cloud emission, cloud-top pressure (CTP), and pixel registration. Global results show a neutral to positive (> 50 cm−3) change for C6-derived CDNC relative to C5.1 for the 1.6 and 2.1 µm channel retrievals, corresponding to a neutral to −2 µm difference in droplet effective radius (re). For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50 cm−3 related to a +2.5 to −1 µm transition in effective radius. Cloud optical thickness (τ) differences were small relative to effective radius and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant inter-collection differences in aggregated values of effective radius due to changes to the precomputed retrieval lookup tables (LUTs) for ocean scenes, changes to retrieved cloud-top pressure, solar irradiance, or above-cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS-derived climatologies and validation studies of effective radius and CDNC.


2010 ◽  
Vol 10 (23) ◽  
pp. 11459-11470 ◽  
Author(s):  
B. S. Grandey ◽  
P. Stier

Abstract. Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNedlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnredlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNedlnτa and dlnredlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.


2010 ◽  
Vol 67 (6) ◽  
pp. 1897-1907 ◽  
Author(s):  
Takashi Y. Nakajima ◽  
Kentaroh Suzuki ◽  
Graeme L. Stephens

Abstract Hydrometeor droplet growth processes are inferred from a combination of Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) cloud particle size observations and CloudSat/Cloud Profiling Radar (CPR) observations of warm water clouds. This study supports the inferences of a related paper (Part I) (i) that MODIS-retrieved cloud droplet radii (CDR) from the 3.7-μm channel (R37) are influenced by the existence of small droplets at cloud top and (ii) that the CDR obtained from 1.6- (R16) and 2.1-μm (R21) channels contain information about drizzle droplets deeper into the cloud as well as cloud droplets. This interpretation is shown to be consistent with radar reflectivities when matched to CDR that were retrieved from MODIS data. This study demonstrates that the droplet growth process from cloud to rain via drizzle proceeds monotonically with the evolution of R16 or R21 from small cloud drops (on the order of 10–12 μm) to drizzle (CDR greater than 14 μm) to rain (CDR greater than 20 μm). Thus, R16 or R21 is an indicator of hydrometeor droplet growth processes whereas R37 does not contain information about coalescence. A new composite analysis, the contoured frequency diagram, is introduced to combine CloudSat/CPR reflectivity profiles and reveals a distinct trimodal population of reflectivities corresponding to cloud, drizzle, and rain modes.


2018 ◽  
Author(s):  
Alexa D. Ross ◽  
Robert E. Holz ◽  
Gregory Quinn ◽  
Jeffrey S. Reid ◽  
Peng Xian ◽  
...  

Abstract. Satellite observations and model simulations cannot, by themselves, give full insight into the complex relationships between aerosols and clouds. This is especially the case over the greater Southeast Asia, an area that is particularly sensitive to changes in precipitation yet possesses some of the world’s largest observability and predictability challenges. We present a new collocated dataset that combines satellite observations from Aqua's Moderate-resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) with the Navy Aerosol Analysis and Prediction System (NAAPS). The dataset is designed with the capability to investigate aerosol-cloud relationships and provides coincident and vertically resolved cloud and aerosol observations for a ten-year period. Using model reanalysis aerosol fields from the NAAPS and coincident cloud liquid effective radius retrievals from MODIS (removing cirrus contamination using CALIOP), we investigate the first aerosol indirect effect. We find overall that as expected, aerosol loading anti-correlates with cloud effective radius, with maximum sensitivity in cumulous mediocris clouds with heights in the 3–4.5 km level. The highest susceptibility in droplet effective radius to modeled perturbations in particle concentrations were found in the more remote regions of the western Pacific Ocean and Indian Ocean. Conversely, there was much less variability in cloud droplet size near emission sources over both land and water. We hypothesize this is suggestive of a high background aerosol population already saturating the cloud condensation nuclei budget.


2020 ◽  
Author(s):  
Chuyong Lin ◽  
Jason Cohen

<p>A simple variance-maximization approach, based on 19 years of weekly Moderate Resolution Imaging spectroradiometer (MOPITT) CO vertical measurements, was employed to quantify the spatial distribution of the global seasonal biomass burning region. Results demonstrate there are a few large-scale and typical biomass burning regions responsible for most of the biomass burning emissions throughout the world, with the largest of these such regions located in Amazonian South America, Western Africa, Indonesia, and Northern Southeast Asia (Eastern India, Northern Myanmar, Laos, Vietnam and Eastern Bangladesh), which are highly associated with the results of Global Fire Emission Database(GFED). The CO is primarily lofted to and spreads downwind at 800mb or 700mb with three exceptions: The Maritime Continent and South America where there is significant spread at 300mb consistent with known deep- and pyro-convection; and Southern Africa where there is significant spread at 600mb. The total mass of CO lofted into the free troposphere ranges from 46% over Central Africa to 92% over Australia.</p>


2010 ◽  
Vol 67 (6) ◽  
pp. 1884-1896 ◽  
Author(s):  
Takashi Y. Nakajima ◽  
Kentaroh Suzuki ◽  
Graeme L. Stephens

Abstract This study examines the sensitivity of the retrieved cloud droplet radii (CDR) to the vertical inhomogeneity of droplet radii, including the existence of a drizzle mode in clouds. The focus of this study is warm water-phase clouds. Radiative transfer simulations of three near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) channels centered on wavelengths of 1.6, 2.1, and 3.7 μm reveal that the retrieved CDR are strongly influenced by the vertical inhomogeneity of droplet size including (i) the existence of small cloud droplets at the cloud top and (ii) the existence of the drizzle mode. The influence of smaller droplets at cloud top affects the 3.7-μm channel most, whereas the presence of drizzle influences radiances of both the 2.1- and 1.6-μm channels more than the 3.7-μm channel. Differences in the CDR obtained from MODIS 1.6-, 2.1-, and 3.7-μm channels that appear in global analysis of MODIS retrievals and the CDR derived from data collected during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) intensive observation period in 1987 can be explained by the results obtained from the sensitivity experiments of this study.


2020 ◽  
Vol 1 (211-212) ◽  
pp. 3-9
Author(s):  
Emil A. Cherrington

Parmi les outils de caractérisation de la dynamique forestière, la télédétection est particulièrement adaptée pourl’observation des vastes surfaces forestières de Guyane  d’accès difficile. Dans le but de réévaluer les hypothèses énoncées dans des études antérieures sur la capacité des capteurs optiques embarqués sur les satellites à détecter la dynamique de la phénologie, nous avons compilé sur une période de 12 années divers indices de végétation corrigés des effets bi-directionnels de variation des angles d’acquisition (BRDF). Ces indices sont issus de 2 capteurs optiques: SPOT VEGETATION, et MODIS (MODerate resolution Imaging Spectroradiometer). Les données ont été analysées pour évaluer les tendances saisonnières à l'échelle de l’ensemble de la Guyane et également sur quatre sites répartis sur ce territoire. Les données révèlent que les forêts de Guyane présentent un patron de saisonnalité. Le pic annuel des divers indices au cours de la période de septembre à octobre est interprété comme le reflet d’un pic de production de feuilles pendant la saison sèche.


2010 ◽  
Vol 49 (3) ◽  
pp. 463-477 ◽  
Author(s):  
David Painemal ◽  
René Garreaud ◽  
José Rutllant ◽  
Paquita Zuidema

Abstract Stratocumulus cloud cover patterns and their relationship to drizzle were characterized at San Felix Island (SFI; 26.5°S, 80°W) in the southeast Pacific Ocean. Small closed, large closed, and open cells were identified in about 65% of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images during 2003. The MODIS imagery was combined with ceilometer and surface meteorological measurements, human observations of cloud types and drizzle, and large-scale meteorological analyses for January through June. The authors identified two drizzle regimes: a synoptically quiescent summer (January–March) regime characterized by a strong anticyclone, large closed cells, and frequent drizzle, and an autumn (April–June) regime characterized by a weaker anticyclone, small closed cells and open cells, and precipitation that was mainly associated with synoptic activity. The large closed cells had higher mean cloud bases and tops than the small closed cells and accounted for 45% of the cumulus-under-stratocumulus reports and 29% of the total drizzle and rain reports. Large closed cells occupied more intermittently coupled boundary layers than did the small closed cells. Open cells also occurred in more decoupled conditions but only accounted for 18% of the total reports of drizzle and rain. The atmospheric stability of large and small closed cells was similar, but large closed cells were more commonly associated with a strong anticyclone, and small closed cells with wave activity superimposed upon a weakened anticyclone. The increased drizzle and occurrence of cumulus-under-stratocumulus in the summer rather than autumn is consistent with higher nighttime liquid water paths. A contribution of this study is the documentation of the ways in which synoptic activity can affect stratocumulus decks.


2007 ◽  
Vol 64 (11) ◽  
pp. 3843-3853 ◽  
Author(s):  
Ruiyue Chen ◽  
Fu-Lung Chang ◽  
Zhanqing Li ◽  
Ralph Ferraro ◽  
Fuzhong Weng

Abstract Cloud droplet effective radius (DER) and liquid water path (LWP) are two key parameters for the quantitative assessment of cloud effects on the exchange of energy and water. Chang and Li presented an algorithm using multichannel measurements made at 3.7, 2.1, and 1.6 μm to retrieve a cloud DER vertical profile for improved cloud LWP estimation. This study applies the multichannel algorithm to the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data on the Aqua satellite, which also carries the Advanced Microwave Scanning Radiometer (AMSR-E) for measuring cloud LWP and precipitation. By analyzing one day of coincident MODIS and AMSR-E observations over the tropical oceans between 40°S and 40°N for overcast warm clouds (>273 K) having optical depths between 3.6 and 23, the effects of DER vertical variation on the MODIS-derived LWP are reported. It is shown that the LWP tends to be overestimated if the DER increases with height within the cloud and underestimated if the DER decreases with height within the cloud. Despite the uncertainties in both MODIS and AMSR-E retrievals, the result shows that accounting for the DER vertical variation reduces the mean biases and root-mean-square errors between the MODIS- and AMSR-E–derived LWPs. Besides, the manner in which the DER changes with height has the potential for differentiating precipitative and nonprecipitative warm clouds. For precipitating clouds, the DER at the cloud top is substantially smaller than the DER at the cloud base. For nonprecipitating clouds, however, the DER differences between the cloud top and the cloud base are much less.


Sign in / Sign up

Export Citation Format

Share Document