scholarly journals Changes in Haze Trends in the Sichuan-Chongqing Region, China, 1980 to 2016

Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 277 ◽  
Author(s):  
Hongke Cai ◽  
Ke Gui ◽  
Quanliang Chen

This study analyzed the long-term variations and trends of haze pollution and its relationships with emission and meteorological factors using the haze days (HDs) data derived from surface observation stations in Sichuan-Chongqing (SCC) region during 1980–2016. The results showed that the multi-year mean number of HDs were 68.7 and 4.9 days for the Sichuan-Basin (SCB) and the rest of SCC region, respectively. The seasonally averaged HDs over SCB reached its maximum in winter (34.7 days), followed by autumn (17.0 days) and spring (11.6 days), and with the minimum observed in summer (5.5 days). The inter-annual variations of HDs in 18 main cities revealed that Zigong, Neijiang, and Yibin, which are located in the southern of SCB, have been the most polluted areas over the SCC region in the past decades. A notable increasing trend in annual HDs over the majority of SCC region was found during 1980–1995, then the trend sharply reversed during 1996–2005, while it increased, fluctuating at some cities after 2006. Seasonally, the increased trend in spring and autumn seems to be the strongest during 1980–1995, whereas the decreased trend in spring and winter was stronger than other seasons during 1996–2005. In addition, a remarkable increasing trend was found in winter since 2006. Using correlation analysis between HDs and emission and meteorological factors during different periods, we found that the variability of local precipitation days (PDs), planetary boundary layer height (PBLH), near-surface wind speed (WS), and relatively humidity (RH) play different roles in influencing the haze pollution change during different historical periods. The joint effect of sharp increase of anthropogenic emissions, reduced PDs and WS intensified the haze pollution in SCB during 1980–1995. In contrast, decreased HDs during 1996–2005 are mainly attributable to the reduction of PM2.5 emission and the increase of PDs (especially in winter). In addition, the decrease of PDs is likely to be responsible for the unexpected increase in winter HDs over SCB in the last decade.

2018 ◽  
Vol 18 (15) ◽  
pp. 10869-10879 ◽  
Author(s):  
Xin Long ◽  
Naifang Bei ◽  
Jiarui Wu ◽  
Xia Li ◽  
Tian Feng ◽  
...  

Abstract. Although aggressive emission control strategies have been implemented recently in the Beijing–Tianjin–Hebei area (BTH), China, pervasive and persistent haze still frequently engulfs the region during wintertime. Afforestation in BTH, primarily concentrated in the Taihang and Yan Mountains, has constituted one of the controversial factors exacerbating the haze pollution due to its slowdown of the surface wind speed. We report here an increasing trend of forest cover in BTH during 2001–2013 based on long-term satellite measurements and the impact of the afforestation on the fine-particle (PM2.5) level. Simulations using the Weather Research and Forecast model with chemistry reveal that afforestation in BTH since 2001 has generally been deteriorating the haze pollution in BTH to some degree, enhancing PM2.5 concentrations by up to 6 % on average. Complete afforestation or deforestation in the Taihang and Yan Mountains would increase or decrease the PM2.5 level within 15 % in BTH. Our model results also suggest that implementing a large ventilation corridor system would not be effective or beneficial to mitigate the haze pollution in Beijing.


2018 ◽  
Author(s):  
Xin Long ◽  
Naifang Bei ◽  
Jiarui Wu ◽  
Xia Li ◽  
Tian Feng ◽  
...  

Abstract. Although aggressive emission control strategies have been implemented recently in the Beijing–Tianjin–Hebei area (BTH), China, pervasive and persistent haze still frequently engulfs the region during wintertime. Afforestation in BTH, primarily concentrated in the Taihang and Yanshan Mountains, has constituted one of the controversial factors exacerbating the haze pollution due to its slowdown of the surface wind speed. We report here an increasing trend of forest cover in BTH during 2001–2013 based on long-term satellite measurements and the impact of the afforestation on the fine particles (PM2.5) level. Simulations using the Weather Research and Forecast model with chemistry reveal that the afforestation in BTH since 2001 generally deteriorates the haze pollution in BTH to some degree, enhancing PM2.5 concentrations by up to 6 % on average. Complete afforestation or deforestation in the Taihang and Yanshan Mountains would increase or decrease the PM2.5 level within 15 % in BTH. Our model results also suggest that implementing a large ventilation corridor system would not be effective or beneficial to mitigate the haze pollution in Beijing.


2016 ◽  
Author(s):  
Jianping Guo ◽  
Yucong Miao ◽  
Yong Zhang ◽  
Huan Liu ◽  
Zhanqing Li ◽  
...  

Abstract. The important roles of planetary boundary layer (PBL) in climate, weather and air quality have long been recognized, but little has been known about the PBL climatology in China. Using the fine-resolution sounding observations made across China and a reanalysis data, we conducted a comprehensive investigation of the PBL in China from January 2011 to July 2015. The boundary layer height (BLH) is found to be generally higher in spring and summer than that in fall and winter. The comparison of seasonally averaged BLH derived from observations and reanalysis shows good agreement. The BLH derived from three- or four-times-daily soundings in summer tends to peak in the early afternoon, and the diurnal amplitude of BLH is higher in the northern and western sub-regions of China than other sub-regions. The meteorological influence on the annual cycle of BLH are investigated as well, showing that BLH at most sounding sites is negatively associated with the surface pressure and lower tropospheric stability, but positively associated with the near-surface wind speed and temperature. This indicates that meteorology plays a significant role in the PBL processes. Overall, the key findings obtained from this study lay a solid foundation for us to gain a deep insight into the fundamentals of PBL in China, which helps understand the roles of PBL playing in the air pollution, weather and climate of China.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 481
Author(s):  
Chao Liu ◽  
Jianping Guo ◽  
Bihui Zhang ◽  
Hengde Zhang ◽  
Panbo Guan ◽  
...  

In this study, based on the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data, the reliability and performances of their application on clean days and polluted days (based on the PM2.5 mass concentrations) in Beijing were assessed. Conventional meteorological factors and diagnostic physical quantities from the NCEP/FNL data were compared with the L-band radar observations in Beijing in the autumns and winters of 2017–2019. The results indicate that the prediction reliability of the temperature was the best compared with those of the relative humidity and wind speed. It is worth noting that the relative humidity was lower and the near-surface wind speed was higher on polluted days from the NCEP/FNL data than from the observations. As far as diagnostic physical quantity is concerned, it was revealed that the temperature inversion intensity depicted by the NCEP/FNL data was significantly lower than that from the observations, especially on polluted days. For example, the difference in the temperature inversion intensity between the NCEP/FNL data and the observation ranged from −0.56 to −0.77 °C on polluted days. In addition, the difference in the wind shears between the NCEP/FNL reanalysis data and the observations increased to 0.40 m/s in the lower boundary layer on polluted days compared with that on clean days. Therefore, it is suggested that the underestimation of the relative humidity and temperature inversion intensity, and the overestimation of the near-surface wind speed should be seriously considered in simulating the air quality in the model, particularly on polluted days, which should be focused on more in future model developments.


2010 ◽  
Vol 23 (5) ◽  
pp. 1209-1225 ◽  
Author(s):  
Hui Wan ◽  
Xiaolan L. Wang ◽  
Val R. Swail

Abstract Near-surface wind speeds recorded at 117 stations in Canada for the period from 1953 to 2006 were analyzed in this study. First, metadata and a logarithmic wind profile were used to adjust hourly wind speeds measured at nonstandard anemometer heights to the standard 10-m level. Monthly mean near-surface wind speed series were then derived and subjected to a statistical homogeneity test, with homogeneous monthly mean geostrophic wind (geowind) speed series being used as reference series. Homogenized monthly mean near-surface wind speed series were obtained by adjusting all significant mean shifts, using the results of the statistical test and modeling along with all available metadata, and were used to assess the long-term trends. This study shows that station relocation and anemometer height change are the main causes for discontinuities in the near-surface wind speed series, followed by instrumentation problems or changes, and observing environment changes. It also shows that the effects of artificial mean shifts on the results of trend analysis are remarkable, and that the homogenized near-surface wind speed series show good spatial consistency of trends, which are in agreement with long-term trends estimated from independent datasets, such as surface winds in the United States and cyclone activity indices and ocean wave heights in the region. These indicate success in the homogenization of the wind data. During the period analyzed, the homogenized near-surface wind speed series show significant decreases throughout western Canada and most parts of southern Canada (except the Maritimes) in all seasons, with significant increases in the central Canadian Arctic in all seasons and in the Maritimes in spring and autumn.


2016 ◽  
Vol 07 (07) ◽  
pp. 938-943 ◽  
Author(s):  
Luiz Felipe N. Cardoso ◽  
Wanderson Luiz Silva ◽  
Maria G. A. Justi da Silva

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuanyuan Meng ◽  
Wanlong Sun

China’s rapid urbanisation and industrialisation have led to frequent haze in China in recent years. Although many measures to control haze have been implemented, no significant improvement has been observed, and haze still exists. In this study, we used wavelet transform to investigate the changes in PM2.5 on the time scale, the relationship amongst meteorological factors, and the causes and changes in haze formation and take measures to prevent haze. Results indicated the following: (1) The peak of PM2.5 changes in winter in the past three years primarily occurred in the range from 11:00 to 13:00 and 20:00 to 22:00. (2) Multiple cycles of daily average PM2.5 concentrations existed in 3–5 d, 6–14 d, 6–21 d, and 16–27 d, with a significant oscillation in 6–14 d and stable cycle characteristics. (3) The meteorological factors promoted the formation of haze to a certain extent. When haze occurred, the near-surface wind speed was only 1 m/s, which was not conducive to the spread of pollutants. (4) The formation of haze was affected by the interaction of various factors; the photochemical reactions of NO2 and O3 also exacerbated the formation of pollutants. This study provided a clear direction for the prevention and prediction of haze. Furthermore, the government must take relevant measures to reduce pollutant emissions and ensure the air quality of cities in winter.


2021 ◽  
Author(s):  
Deliang Chen ◽  
Kaiqiang Deng ◽  
Cesar Azorin-Molina ◽  
Song Yang ◽  
Gangfeng Zhang ◽  
...  

Abstract The near-surface wind speed over land has declined in recent decades, a trend known as terrestrial stilling (TS)1-2. However, recent studies have indicated a reversal of the TS in the Northern Hemisphere (NH) during the last decade3-6, triggering renovated interest in the wind speed changes. Here we show that the TS in the NH mid-latitudes will continue in all seasons throughout the 21st century, especially in summer. The recent reversal of TS is most likely a multi-decadal fluctuation related to the Pacific and Atlantic climate variations, rather than a secular trend. A new paradigm of the future TS is further proposed, which is related to an intensified subsidence inversion over the mid-latitudes, caused by enhanced tropical and subtropical convections. This study reveals the important role of global warming in reducing the near-surface wind speed on long time scales. The continuing TS means a long-term strategy for wind energy production needs to be developed, particularly for the NH mid-latitude countries.


2016 ◽  
Vol 16 (20) ◽  
pp. 13309-13319 ◽  
Author(s):  
Jianping Guo ◽  
Yucong Miao ◽  
Yong Zhang ◽  
Huan Liu ◽  
Zhanqing Li ◽  
...  

Abstract. The important roles of the planetary boundary layer (PBL) in climate, weather and air quality have long been recognized, but little is known about the PBL climatology in China. Using the fine-resolution sounding observations made across China and reanalysis data, we conducted a comprehensive investigation of the PBL in China from January 2011 to July 2015. The boundary layer height (BLH) is found to be generally higher in spring and summer than that in fall and winter. The comparison of seasonally averaged BLHs derived from observations and reanalysis, on average, shows good agreement, despite the pronounced inconsistence in some regions. The BLH, derived from soundings conducted three or four times daily in summer, tends to peak in the early afternoon, and the diurnal amplitude of BLH is higher in the northern and western subregions of China than other subregions. The meteorological influence on the annual cycle of BLH is investigated as well, showing that BLH at most sounding sites is negatively associated with the surface pressure and lower tropospheric stability, but positively associated with the near-surface wind speed and temperature. In addition, cloud tends to suppress the development of PBL, particularly in the early afternoon. This indicates that meteorology plays a significant role in the PBL processes. Overall, the key findings obtained from this study lay a solid foundation for us to gain a deep insight into the fundamentals of PBL in China, which helps to understand the roles that the PBL plays in the air pollution, weather and climate of China.


Sign in / Sign up

Export Citation Format

Share Document