scholarly journals Interdecadal Shifts in the Winter Monsoon Rainfall of the Philippines

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 464 ◽  
Author(s):  
Lyndon M. Olaguera ◽  
Jun Matsumoto ◽  
Hisayuki Kubota ◽  
Tomoshige Inoue ◽  
Esperanza O. Cayanan ◽  
...  

This study investigates the interdecadal shifts in the winter monsoon (November to March) rainfall of the Philippines from 1961 to 2008. Monthly analysis of the winter monsoon rainfall shows that the shifts are most remarkable during December. In particular, two interdecadal shifts are identified in the December rainfall time series around 1976/1977 and 1992/1993. To facilitate the examination of the possible mechanisms leading to these shifts, the analysis period is divided into three epochs: 1961–1976 (E1), 1977–1992 (E2), and 1993–2008 (E3). The mean and interannual variability of rainfall during E2 are suppressed compared with the two adjoining epochs. The shift around 1976/1977 is related to the phase shift of the Pacific Decadal Oscillation (PDO) from a negative phase to a positive phase and features an El Niño-like sea surface temperature (SST) change over the Pacific basin, while that around 1992/1993 is related to a La Niña-like SST change. Further analysis of the largescale circulation features shows that the decrease in the mean rainfall during E2 can be attributed to the weakening of the low-level easterly winds, decrease in moisture transport, and decrease in tropical cyclone activity. In addition, the suppressed interannual variability of rainfall during E2 can be partly attributed to the El Niño-like SST change and the weakening of the East Asian winter monsoon.

2006 ◽  
Vol 19 (1) ◽  
pp. 104-122 ◽  
Author(s):  
S. L. Gong ◽  
X. Y. Zhang ◽  
T. L. Zhao ◽  
X. B. Zhang ◽  
L. A. Barrie ◽  
...  

Abstract A 44-yr climatology of spring Asian dust aerosol emission, column loading, deposition, trans-Pacific transport routes, and budgets during 1960–2003 was simulated with the Northern Aerosol Regional Climate Model (NARCM). Interannual variability in these Asian dust aerosol properties simulated by the model and its climate connections are analyzed with major climatic indices and records in ground observations. For dust production from most of the source regions, the strongest correlations were with the surface wind speed in the source region and the area and intensity indices of the Asian polar vortex (AIAPV and IIAPV, respectively). Dust emission was negatively correlated with precipitation and surface temperatures in spring. The strength of the East Asian monsoon was not found to be directly related to dust production but rather with the transport of dust from the Asian subcontinent. The interannual variability of dust loading and deposition showed similar relations with various climate indices. The correlation of Asian dust loading and deposition with the western Pacific (WP) pattern and Atmospheric Circulation Index (ACI) exhibited contrasting meridional and zonal distributions. AIAPV and IIAPV were strongly correlated with the midlatitude zonal distribution of dust loading and deposition over the Asian subcontinent and the North Pacific. The Pacific–North American (PNA) pattern and Southern Oscillation index (SOI) displayed an opposite correlation pattern of dust loading and deposition in the eastern Pacific, while SOI correlated significantly with dust loading over eastern China and northeast Asia. The Pacific decadal oscillation (PDO) was linked to variations of dust aerosol and deposition not only in the area of the eastern North Pacific and North America but also in the Asian dust source regions. The anomalies of transport flux and its divergence as well as dust column loading were also identified for eight typical El Niño and eight La Niña years. A shift of the trans-Pacific transport path to the north was found for El Niño years, which resulted in less dust storms and dust loading in China. In El Niño years the deserts in Mongolia and western north China closer to the polar cold air regions contributed more dust aerosol in the troposphere, while in La Niña years the deserts in central and eastern north China far from polar cold regions provided more dust aerosol in the troposphere. On the basis of the variability of Asian dust aerosol budgets, the ratio of inflow to North America to the outflow from Asia was found to be correlated negatively with the PNA index and positively with the WP index.


2018 ◽  
Vol 32 (1) ◽  
pp. 231-249 ◽  
Author(s):  
Agniv Sengupta ◽  
Sumant Nigam

Abstract The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM. El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent. The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.


2021 ◽  
Vol 34 (10) ◽  
pp. 4089-4101
Author(s):  
Ji-Won Kim ◽  
Ting-Huai Chang ◽  
Ching-Teng Lee ◽  
Jin-Yi Yu

AbstractUsing observational data and model hindcasts produced by a coupled climate model, we examine the response of the East Asian winter monsoon (EAWM) to three types of El Niño: eastern Pacific (EP) and central Pacific I (CP-I) and II (CP-II) El Niños. The observational analysis shows that all three El Niño types weaken the EAWM with varying degrees of impact. The EP El Niño has the largest weakening effect, while the CP-II El Niño has the second largest, and the CP-I El Niño has the smallest. We find that diverse El Niño types impact the EAWM by altering the responses of two anomalous anticyclones during El Niño mature winter: the western North Pacific anticyclone (WNPAC) and Kuroshio anticyclone (KAC). The WNPAC responses are controlled by the Gill response and Indian Ocean warming processes that both respond to the eastern-to-central tropical Pacific precipitation anomalies. The KAC responses are controlled by a poleward wave propagation responding to the northwestern tropical Pacific precipitation anomalies. We find that the model hindcasts significantly underestimate the weakening effect during the EP and CP-II El Niños. These underestimations are related to a model deficiency in which it produces a too-weak WNPAC response during the EP El Niño and completely misses the KAC response during both types of El Niño. The too-weak WNPAC response is caused by the model deficiency of simulating too-weak eastern-to-central tropical Pacific precipitation anomalies. The lack of KAC response arises from the unrealistic response of the model’s extratropical atmosphere to the northwestern tropical Pacific precipitation anomalies.


2016 ◽  
Vol 29 (5) ◽  
pp. 1877-1897 ◽  
Author(s):  
Irenea L. Corporal-Lodangco ◽  
Lance M. Leslie ◽  
Peter J. Lamb

Abstract This study investigates the El Niño–Southern Oscillation (ENSO) contribution to Philippine tropical cyclone (TC) variability, for a range of quarterly TC metrics. Philippine TC activity is found to depend on both ENSO quarter and phase. TC counts during El Niño phases differ significantly from neutral phases in all quarters, whereas neutral and La Niña phases differ only in January–March and July–September. Differences in landfalls between neutral and El Niño phases are significant in January–March and October–December and in January–March for neutral and La Niña phases. El Niño and La Niña landfalls are significantly different in April–June and October–December. Philippine neutral and El Niño TC genesis cover broader longitude–latitude ranges with similar long tracks, originating farther east in the western North Pacific. In El Niño phases, the mean eastward displacement of genesis locations and more recurving TCs reduce Philippine TC frequencies. Proximity of La Niña TC genesis to the Philippines and straight-moving tracks in April–June and October–December increase TC frequencies and landfalls. Neutral and El Niño accumulated cyclone energy (ACE) values are above average, except in April–June of El Niño phases. Above-average quarterly ACE in neutral years is due to increased TC frequencies, days, and intensities, whereas above-average El Niño ACE in July–September is due to increased TC days and intensities. Below-average La Niña ACE results from fewer TCs and shorter life cycles. Longer TC durations produce slightly above-average TC days in July–September El Niño phases. Fewer TCs than neutral years, as well as shorter TC durations, imply less TC days in La Niña phases. However, above-average TC days occur in October–December as a result of higher TC frequencies.


Sign in / Sign up

Export Citation Format

Share Document