A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part II: Interannual Variability and Climate Connections

2006 ◽  
Vol 19 (1) ◽  
pp. 104-122 ◽  
Author(s):  
S. L. Gong ◽  
X. Y. Zhang ◽  
T. L. Zhao ◽  
X. B. Zhang ◽  
L. A. Barrie ◽  
...  

Abstract A 44-yr climatology of spring Asian dust aerosol emission, column loading, deposition, trans-Pacific transport routes, and budgets during 1960–2003 was simulated with the Northern Aerosol Regional Climate Model (NARCM). Interannual variability in these Asian dust aerosol properties simulated by the model and its climate connections are analyzed with major climatic indices and records in ground observations. For dust production from most of the source regions, the strongest correlations were with the surface wind speed in the source region and the area and intensity indices of the Asian polar vortex (AIAPV and IIAPV, respectively). Dust emission was negatively correlated with precipitation and surface temperatures in spring. The strength of the East Asian monsoon was not found to be directly related to dust production but rather with the transport of dust from the Asian subcontinent. The interannual variability of dust loading and deposition showed similar relations with various climate indices. The correlation of Asian dust loading and deposition with the western Pacific (WP) pattern and Atmospheric Circulation Index (ACI) exhibited contrasting meridional and zonal distributions. AIAPV and IIAPV were strongly correlated with the midlatitude zonal distribution of dust loading and deposition over the Asian subcontinent and the North Pacific. The Pacific–North American (PNA) pattern and Southern Oscillation index (SOI) displayed an opposite correlation pattern of dust loading and deposition in the eastern Pacific, while SOI correlated significantly with dust loading over eastern China and northeast Asia. The Pacific decadal oscillation (PDO) was linked to variations of dust aerosol and deposition not only in the area of the eastern North Pacific and North America but also in the Asian dust source regions. The anomalies of transport flux and its divergence as well as dust column loading were also identified for eight typical El Niño and eight La Niña years. A shift of the trans-Pacific transport path to the north was found for El Niño years, which resulted in less dust storms and dust loading in China. In El Niño years the deserts in Mongolia and western north China closer to the polar cold air regions contributed more dust aerosol in the troposphere, while in La Niña years the deserts in central and eastern north China far from polar cold regions provided more dust aerosol in the troposphere. On the basis of the variability of Asian dust aerosol budgets, the ratio of inflow to North America to the outflow from Asia was found to be correlated negatively with the PNA index and positively with the WP index.

2020 ◽  
Vol 148 (5) ◽  
pp. 1861-1875
Author(s):  
Andrew W. Robertson ◽  
Nicolas Vigaud ◽  
Jing Yuan ◽  
Michael K. Tippett

Abstract Large-scale atmospheric circulation regime structures are used to diagnose subseasonal forecasts of wintertime geopotential height fields over the North American sector, from the NCEP CFSv2 model. Four large-scale daily circulation regimes derived from reanalysis 500-hPa geopotential height data using K-means clustering are used as a low-dimensional basis for diagnosing the model’s forecasts up to 45 days ahead. On average, hindcast skill in regime space is found to be limited to 10–15 days ahead, in terms of anomaly correlation of 5-day averages of regime counts, over the 1999–2010 period. However, skill up to 30 days ahead is identified in individual winters, and intraseasonal episodes of high skill are identified using a forecast-evolution graphical tool. A striking vacillation between the West Coast and Pacific ridge patterns during December–January 2008/09 is shown to be predicted 20–25 days in advance, illustrating the possibility to identify “forecasts of opportunity” when subseasonal forecast skill is much higher than the average. The forecast-evolution tool also provides insight into the poor seasonal forecasts of California precipitation by operational centers during the 2015/16 El Niño winter. The Pacific trough regime is shown to be greatly overpredicted beyond 1–2 weeks in advance during the 2015/16 winter, with weather-scale features dominating the forecast evolution at shorter lead times. A similar though less extreme situation took place during the weaker El Niño of 2009/10, with the Pacific trough overforecast at S2S lead times.


Author(s):  
Jing-Jia Luo

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article. The tropical Indian Ocean is unique in several aspects. Unlike the Pacific and the Atlantic Oceans, the Indian Ocean is bounded to the north by a large landmass, the Eurasian continent. The large thermal heat contrast between the ocean in the south and the land in the north induces the world’s strongest monsoon systems in South and East Asia, in response to the seasonal migration of solar radiation. The strong and seasonally reversing surface winds generate large seasonal variations in ocean currents and basin-wide meridional heat transport across the equator. In contrast to the tropical Pacific and the Atlantic, where easterly trade winds prevail throughout the year, westerly winds (albeit with a relatively weak magnitude) blow along the equatorial Indian Ocean, particularly during the boreal spring and autumn seasons, generating the semi-annual Yoshida-Wyrtki eastward equatorial ocean currents. As a consequence of the lack of equatorial upwelling, the tropical Indian Ocean occupies the largest portion of the warm water pool (with Sea Surface Temperature [SST] being greater than 28 °C) on Earth. The massive warm water provides a huge potential energy available for deep convections that significantly affect the weather-climate over the globe. It is therefore of vital importance to discover and understand climate variabilities in the Indian Ocean and to further develop a capability to correctly predict the seasonal departures of the warm waters and their global teleconnections. The Indian Ocean Dipole (IOD) is the one of the recently discovered climate variables in the tropical Indian Ocean. During the development of the super El Niño in 1997, the climatological zonal SST gradient along the equator was much reduced (with strong cold SST anomalies in the east and warm anomalies in the west). The surface westerly winds switched to easterlies, and the ocean thermocline became shallow in the east and deep in the west. These features are reminiscent of what are observed during El Niño years in the Pacific, representing a typical coupled process between the ocean and the atmosphere. The IOD event in 1997 contributed significantly to floods in eastern Africa and severe droughts and bushfires in Indonesia and southeastern Australia. Since the discovery of the 1997 IOD event, extensive efforts have been made to lead the rapid progress in understanding the air-sea coupled climate variabilities in the Indian Ocean; and many approaches, including simple statistical models and comprehensive ocean-atmosphere coupled models, have been developed to simulate and predict the Indian Ocean climate. Essential to the discussion are the ocean-atmosphere dynamics underpinning the seasonal predictability of the IOD, critical factors that limit the IOD predictability (inter-comparison with El Niño-Southern Oscillation [ENSO]), observations and initialization approaches that provide realistic initial conditions for IOD predictions, models and approaches that have been developed to simulate and predict the IOD, the influence of global warming on the IOD predictability, impacts of IOD-ENSO interactions on the IOD predictability, and the current status and perspectives of the IOD prediction at seasonal to multi-annual timescales.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Timothy Paul Eichler ◽  
Jon Gottschalck

Extratropical cyclones exert a large socioeconomic impact. It is therefore important to assess their interannual variability. We generate cyclone tracks from the National Center for Environmental Prediction’s Reanalysis I and the European Centre for Medium Range Prediction ERA-40 reanalysis datasets. To investigate the interannual variability of cyclone tracks, we compare the effects of El Niño, the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), and the Pacific North American Pattern (PNA) on cyclone tracks. Composite analysis shows similar results for the impacts of El Niño, NAO, and the PNA on NH storm tracks. Although it is encouraging, we also found regional differences when comparing reanalysis datasets. The results for the IOD suggested a wave-like alteration of cyclone frequency across the northern US/Canada possibly related to Rossby wave propagation. Partial correlation demonstrates that although El Niño affects cyclone frequency in the North Pacific and along the US east coast, its impact on the North Pacific is accomplished via the PNA. Similarly, the PNA’s impact on US east coast storms is modulated via El Niño. In contrast, the impacts of the NAO extend as far west as the North Pacific and are not influenced by either the PNA or El Niño.


2011 ◽  
Vol 24 (16) ◽  
pp. 4314-4331 ◽  
Author(s):  
Monique Messié ◽  
Francisco Chavez

Abstract A century-long EOF analysis of global sea surface temperature (SST) was carried out and the first six modes, independent by construction, were found to be associated with well-known regional climate phenomena: the El Niño–Southern Oscillation (ENSO), the Atlantic multidecadal oscillation (AMO), the Pacific decadal oscillation (PDO), the North Pacific Gyre Oscillation (NPGO), El Niño Modoki, and the Atlantic El Niño. Four of the six global modes are dominated by Pacific changes, the other two (M2 and M6) being associated with the AMO and Atlantic El Niño, respectively. The principal component time series of the ENSO (M1) and North Pacific (M3) modes are coherent at time scales >10 yr, and their interaction results in the traditional PDO pattern and the dominant mode of Pacific multidecadal variability. The M3 and PDO time series are well correlated, but the EOFs have different spatial patterns. The fourth mode (M4) has been strengthening since the 1950s and is related to the NPGO but also to El Niño Modoki, especially at the decadal scale. The fifth global mode (M5) is also spatially and temporally correlated to El Niño Modoki. The Pacific SST modes are further related to atmospheric forcing and the circulation of the North Pacific subpolar and subtropical gyres.


2010 ◽  
Vol 23 (23) ◽  
pp. 6248-6262 ◽  
Author(s):  
Jesse Kenyon ◽  
Gabriele C. Hegerl

Abstract The probability of climate extremes is strongly affected by atmospheric circulation. This study quantifies the worldwide influence of three major modes of circulation on station-based indices of intense precipitation: the El Niño–Southern Oscillation, the Pacific interdecadal variability as characterized by the North Pacific index (NPI), and the North Atlantic Oscillation–Northern Annular Mode. The study examines which stations show a statistically significant (5%) difference between the positive and negative phases of a circulation regime. Results show distinct regional patterns of response to all these modes of climate variability; however, precipitation extremes are most substantially affected by the El Niño–Southern Oscillation. The effects of the El Niño–Southern Oscillation are seen throughout the world, including in India, Africa, South America, the Pacific Rim, North America, and, weakly, Europe. The North Atlantic Oscillation has a strong, continent-wide effect on Eurasia and affects a small, but not negligible, percentage of stations across the Northern Hemispheric midlatitudes. This percentage increases slightly if the Northern Annular Mode index is used rather than the NAO index. In that case, a region of increase in intense precipitation can also be found in Southeast Asia. The NPI influence on precipitation extremes is similar to the response to El Niño, and strongest in landmasses adjacent to the Pacific. Consistently, indices of more rare precipitation events show a weaker response to circulation than indices of moderate extremes; the results are quite similar, but of opposite sign, for negative anomalies of the circulation indices.


2011 ◽  
Vol 32 (15) ◽  
pp. 2301-2310 ◽  
Author(s):  
Gregory J. McCabe ◽  
Toby R. Ault ◽  
Benjamin I. Cook ◽  
Julio L. Betancourt ◽  
Mark D. Schwartz

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 464 ◽  
Author(s):  
Lyndon M. Olaguera ◽  
Jun Matsumoto ◽  
Hisayuki Kubota ◽  
Tomoshige Inoue ◽  
Esperanza O. Cayanan ◽  
...  

This study investigates the interdecadal shifts in the winter monsoon (November to March) rainfall of the Philippines from 1961 to 2008. Monthly analysis of the winter monsoon rainfall shows that the shifts are most remarkable during December. In particular, two interdecadal shifts are identified in the December rainfall time series around 1976/1977 and 1992/1993. To facilitate the examination of the possible mechanisms leading to these shifts, the analysis period is divided into three epochs: 1961–1976 (E1), 1977–1992 (E2), and 1993–2008 (E3). The mean and interannual variability of rainfall during E2 are suppressed compared with the two adjoining epochs. The shift around 1976/1977 is related to the phase shift of the Pacific Decadal Oscillation (PDO) from a negative phase to a positive phase and features an El Niño-like sea surface temperature (SST) change over the Pacific basin, while that around 1992/1993 is related to a La Niña-like SST change. Further analysis of the largescale circulation features shows that the decrease in the mean rainfall during E2 can be attributed to the weakening of the low-level easterly winds, decrease in moisture transport, and decrease in tropical cyclone activity. In addition, the suppressed interannual variability of rainfall during E2 can be partly attributed to the El Niño-like SST change and the weakening of the East Asian winter monsoon.


Sign in / Sign up

Export Citation Format

Share Document