scholarly journals Introducing the Language of “Relativity” for New Scaffold Categorization

2019 ◽  
Vol 6 (1) ◽  
pp. 20 ◽  
Author(s):  
Haobo Yuan

Research related with scaffold engineering tends to be cross-domain and miscellaneous. Several realms may need to be focused simultaneously, including biomedicine for cell culture and 3D scaffold, physics for dynamics, manufacturing for technologies like 3D printing, chemistry for material composition, as well as architecture for scaffold’s geometric control. As a result, researchers with different backgrounds sometimes could have different understanding towards the product described as ‘Scaffold’. After reviewing the literature, numerous studies termed their developed scaffold as ‘novel’, compared with scaffolds previously designed by others using comparing criterion like ‘research time’, ‘manufacturing method’, ‘geometry’, and so on. While it may have been convenient a decade ago to, for example, categorize scaffold with ‘Dualistic Thinking’ logic into ‘simple-complicated’ or ‘traditional-novel’, this method for categorizing ‘novelty’ and distinguishing scaffold is insufficiently persuasive and precise when it comes to modern or future scaffold. From this departure of philosophical language, namely the language of ‘relativity’, it is important to distinguish between different scaffolds. Other than attempting to avoid ambiguity in perceiving scaffold, this language also provides clarity regarding the ‘evolution stage’ where the focused scaffolds currently stand, where they have been developed, and where in future they could possibly evolve.

2018 ◽  
Vol 5 (3) ◽  
pp. 57 ◽  
Author(s):  
Haobo Yuan ◽  
Ke Xing ◽  
Hung-Yao Hsu

Cell culture and cell scaffold engineering have previously developed in two directions. First can be ‘static into dynamic’, with proven effects that dynamic cultures have benefits over static ones. Researches in this direction have used several mechanical means, like external vibrators or shakers, to approximate the dynamic environments in real tissue, though such approaches could only partly address the issue. Second, can be ‘2D into 3D’, that is, artificially created three-dimensional (3D) passive (also called ‘static’) scaffolds have been utilized for 3D cell culture, helping external culturing conditions mimic real tissue 3D environments in a better way as compared with traditional two-dimensional (2D) culturing. In terms of the fabrication of 3D scaffolds, 3D printing (3DP) has witnessed its high popularity in recent years with ascending applicability, and this tendency might continue to grow along with the rapid development in scaffold engineering. In this review, we first introduce cell culturing, then focus 3D cell culture scaffold, vibration stimulation for dynamic culture, and 3DP technologies fabricating 3D scaffold. Potential interconnection of these realms will be analyzed, as well as the limitations of current 3D scaffold and vibration mechanisms. In the recommendation part, further discussion on future scaffold engineering regarding 3D vibratory scaffold will be addressed, indicating 3DP as a positive bridging technology for future scaffold with integrated and localized vibratory functions.


2010 ◽  
Vol 5 (4) ◽  
pp. 045001 ◽  
Author(s):  
Anupama Mittal ◽  
Poonam Negi ◽  
Kalpna Garkhal ◽  
Shalini Verma ◽  
Neeraj Kumar

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 229 ◽  
Author(s):  
Dongjin Lee ◽  
Chaenyung Cha

Tumor spheroids are considered a valuable three dimensional (3D) tissue model to study various aspects of tumor physiology for biomedical applications such as tissue engineering and drug screening as well as basic scientific endeavors, as several cell types can efficiently form spheroids by themselves in both suspension and adherent cell cultures. However, it is more desirable to utilize a 3D scaffold with tunable properties to create more physiologically relevant tumor spheroids as well as optimize their formation. In this study, bioactive spherical microgels supporting 3D cell culture are fabricated by a flow-focusing microfluidic device. Uniform-sized aqueous droplets of gel precursor solution dispersed with cells generated by the microfluidic device are photocrosslinked to fabricate cell-laden microgels. Their mechanical properties are controlled by the concentration of gel-forming polymer. Using breast adenocarcinoma cells, MCF-7, the effect of mechanical properties of microgels on their proliferation and the eventual spheroid formation was explored. Furthermore, the tumor cells are co-cultured with macrophages of fibroblasts, which are known to play a prominent role in tumor physiology, within the microgels to explore their role in spheroid formation. Taken together, the results from this study provide the design strategy for creating tumor spheroids utilizing mechanically-tunable microgels as 3D cell culture platform.


2014 ◽  
Vol 12 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Uwe Scheithauer ◽  
Eric Schwarzer ◽  
Hans-Jürgen Richter ◽  
Tassilo Moritz

Talanta ◽  
2020 ◽  
Vol 211 ◽  
pp. 120750 ◽  
Author(s):  
Kai Li ◽  
Dazhi Wang ◽  
Kuipeng Zhao ◽  
Kedong Song ◽  
Junsheng Liang

2018 ◽  
Vol 10 (27) ◽  
pp. 3364-3374 ◽  
Author(s):  
Akash S. Munshi ◽  
Chengpeng Chen ◽  
Alexandra D. Townsend ◽  
R. Scott Martin

Here we show that separate modules fabricated using 3D printing technology can be easily assembled to quantitate the amount of nitric oxide released from endothelial cells following ATP stimulation.


2020 ◽  
Vol 8 (46) ◽  
pp. 10474-10486
Author(s):  
Jingzhou Zhao ◽  
Nongyue He

Embedded 3D printing is an additive manufacturing method based on a material extrusion strategy.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5654
Author(s):  
Milan Vaško ◽  
Milan Sága ◽  
Jaroslav Majko ◽  
Alan Vaško ◽  
Marián Handrik

The additive manufacturing represents a new production method of composites reinforced with a continuous fibre. In recent times, the material produced by this new manufacturing method constituted a replacement for conventional materials—e.g., steel in many technical areas. As the research on FRTP composites is currently under way, the purpose of this article is to add information to the mosaic of studies in this research area. The scientific articles published until now have focused especially on mechanical testing, such as tensile and bending mechanical testing and their assessment. Therefore, the authors decided to carry out and assess the impact test of the FRTP composites produced by 3D printing because this area offers a large extent of research activities. We observed the influence of the reinforcement in the form of the micro-fibre carbon in the thermoplastic (Onyx) or a continuous reinforcement fibre in the lamina on the specimen’s behaviour during the impact load processes. The results of the experimental measurements show that the presence of a continuous fibre in the structure significantly affects the strength of the printed specimens; however, the design process of the printed object has to take into account the importance of selecting a suitable fibre type. The selection of a suitable strategy for arranging the fibre in the lamina and the direction of the impact load against the position of the fibre seem to be very important parameters.


Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 152
Author(s):  
Cacie Hart ◽  
Charles M. Didier ◽  
Frank Sommerhage ◽  
Swaminathan Rajaraman

The widespread adaptation of 3D printing in the microfluidic, bioelectronic, and Bio-MEMS communities has been stifled by the lack of investigation into the biocompatibility of commercially available printer resins. By introducing an in-depth post-printing treatment of these resins, their biocompatibility can be dramatically improved up to that of a standard cell culture vessel (99.99%). Additionally, encapsulating resins that are less biocompatible with materials that are common constituents in biosensors further enhances the biocompatibility of the material. This investigation provides a clear pathway toward developing fully functional and biocompatible 3D printed biosensor devices, especially for interfacing with electrogenic cells, utilizing benchtop-based microfabrication, and post-processing techniques.


Author(s):  
Frank Celentano ◽  
Nicholas May ◽  
Edward Simoneau ◽  
Richard DiPasquale ◽  
Zahra Shahbazi ◽  
...  

Professional musicians today often invest in obtaining antique or vintage instruments. These pieces can be used as collector items or more practically, as performance instruments to give a unique sound of a past music era. Unfortunately, these relics are rare, fragile, and particularly expensive to obtain for a modern day musician. The opportunity to reproduce the sound of an antique instrument through the use of additive manufacturing (3D printing) can make this desired product significantly more affordable. 3D printing allows for duplication of unique parts in a low cost and environmentally friendly method, due to its minimal material waste. Additionally, it allows complex geometries to be created without the limitations of other manufacturing techniques. This study focuses on the primary differences, particularly sound quality and comfort, between saxophone mouthpieces that have been 3D printed and those produced by more traditional methods. Saxophone mouthpieces are commonly derived from a milled blank of either hard rubber, ebonite or brass. Although 3D printers can produce a design with the same or similar materials, they are typically created in a layered pattern. This can potentially affect the porosity and surface of a mouthpiece, ultimately affecting player comfort and sound quality. To evaluate this, acoustic tests will be performed. This will involve both traditionally manufactured mouthpieces and 3D prints of the same geometry created from x-ray scans obtained using a ZEISS Xradia Versa 510. The scans are two dimensional images which go through processes of reconstruction and segmentation, which is the process of assigning material to voxels. The result is a point cloud model, which can be used for 3D printing. High quality audio recordings of each mouthpiece will be obtained and a sound analysis will be performed. The focus of this analysis is to determine what qualities of the sound are changed by the manufacturing method and how true the sound of a 3D printed mouthpiece is to its milled counterpart. Additive manufacturing can lead to more inconsistent products of the original design due to the accuracy, repeatability and resolution of the printer, as well as the layer thickness. In order for additive manufacturing to be a common practice of mouthpiece manufacturing, the printer quality must be tested for its precision to an original model. The quality of a 3D print can also have effects on the comfort of the player. Lower quality 3D prints have an inherent roughness which can cause discomfort and difficulty for the musician. This research will determine the effects of manufacturing method on the sound quality and overall comfort of a mouthpiece. In addition, we will evaluate the validity of additive manufacturing as a method of producing mouthpieces.


Sign in / Sign up

Export Citation Format

Share Document