Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation

2010 ◽  
Vol 5 (4) ◽  
pp. 045001 ◽  
Author(s):  
Anupama Mittal ◽  
Poonam Negi ◽  
Kalpna Garkhal ◽  
Shalini Verma ◽  
Neeraj Kumar
2020 ◽  
Vol 45 (5) ◽  
pp. 631-637
Author(s):  
Cansu Ozel-Tasci ◽  
Gozde Pilatin ◽  
Ozgur Edeer ◽  
Sukru Gulec

AbstractBackgroundFunctional foods can help prevent metabolic diseases, and it is essential to evaluate functional characteristics of foods through in vitro and in vivo experimental approaches.ObjectiveWe aimed to use the bicameral cell culture system combined with the in vitro digestion to evaluate glucose bioavailability.Materials and methodsCake, almond paste, and pudding were modified by adding fiber and replacing sugar with sweeteners and polyols. Digestion process was modeled in test tubes. Rat enterocyte cells (IEC-6) were grown in a bicameral cell culture system to mimic the physiological characteristics of the human intestine. The glucose bioaccessibility and cellular glucose efflux were measured by glucose oxidase assay.Results and discussionThe glucose bioaccessibilities of modified foods were significantly lower (cake: 2.6 fold, almond paste: 9.2 fold, pudding 2.8 fold) than the controls. Cellular glucose effluxes also decreased in the modified cake, almond paste, and pudding by 2.2, 4, and 2 fold respectively compared to their controls.ConclusionOur results suggest that combining in vitro enzymatic digestion with cell culture studies can be a practical way to test in vitro glucose bioaccessibility and bioavailability in functional food development.


2005 ◽  
Vol 71 (3) ◽  
pp. 1495-1500 ◽  
Author(s):  
George D. Di Giovanni ◽  
Mark W. LeChevallier

ABSTRACT A quantitative TaqMan PCR method was developed for assessing the Cryptosporidium parvum infection of in vitro cultivated human ileocecal adenocarcinoma (HCT-8) cell cultures. This method, termed cell culture quantitative sequence detection (CC-QSD), has numerous applications, several of which are presented. CC-QSD was used to investigate parasite infection in cell culture over time, the effects of oocyst treatment on infectivity and infectivity assessment of different C. parvum isolates. CC-QSD revealed that cell culture infection at 24 and 48 h postinoculation was approximately 20 and 60%, respectively, of the endpoint 72-h postinoculation infection. Evaluation of three different lots of C. parvum Iowa isolate oocysts revealed that the mean infection of 0.1 N HCl-treated oocysts was only 36% of the infection obtained with oocysts treated with acidified Hanks' balanced salt solution containing 1% trypsin. CC-QSD comparison of the C. parvum Iowa and TAMU isolates revealed significantly higher levels of infection for the TAMU isolate, which agrees with and supports previous human, animal, and cell culture studies. CC-QSD has the potential to aid in the optimization of Cryptosporidium cell culture methods and facilitate quantitative evaluation of cell culture infectivity experiments.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Emily E. Rosowski

ABSTRACT Macrophages are a key cell type in innate immunity. Years of in vitro cell culture studies have unraveled myriad macrophage pathways that combat pathogens and demonstrated how pathogen effectors subvert these mechanisms. However, in vitro cell culture studies may not accurately reflect how macrophages fit into the context of an innate immune response in whole animals with multiple cell types and tissues. Larval zebrafish have emerged as an intermediate model of innate immunity and host-pathogen interactions to bridge the gap between cell culture studies and mammalian models. These organisms possess an innate immune system largely conserved with that of humans and allow state-of-the-art genetic and imaging techniques, all in the context of an intact organism. Using larval zebrafish, researchers are elucidating the function of macrophages in response to many different infections, including both bacterial and fungal pathogens. The goal of this review is to highlight studies in zebrafish that utilized live-imaging techniques to analyze macrophage activities in response to pathogens. Recent studies have explored the roles of specific pathways and mechanisms in macrophage killing ability, explored how pathogens subvert these responses, identified subsets of macrophages with differential microbicidal activities, and implicated macrophages as an intracellular niche for pathogen survival and trafficking. Research using this model continues to advance our understanding of how macrophages, and specific pathways inside these cells, fit into complex multicellular innate immune responses in vivo, providing important information on how pathogens evade these pathways and how we can exploit them for development of treatments against microbial infections.


2001 ◽  
pp. 35-41 ◽  
Author(s):  
A Saveanu ◽  
I Morange-Ramos ◽  
G Gunz ◽  
H Dufour ◽  
A Enjalbert ◽  
...  

OBJECTIVE: Evaluation of the efficiency of somatostatin analogues in the treatment of a mixed luteinizing hormone (LH)-, alpha-subunit-, prolactin (PRL)-secreting pituitary adenoma. DESIGN: A 30-year-old woman, with amenorrhaea-galactorrhaea, presented with a pituitary macroadenoma. The endocrine evaluation showed high plasma levels of PRL, LH, and alpha-subunit inhibited by 65%, 65% and 33% respectively under octreotide test (200 microg, s.c.). Long-term treatment with slow release (SR) lanreotide (30 mg/10 days, i.m.) restored menstrual cycles and normalized PRL values. Due to persisting supranormal levels of LH and alpha-subunit, and to the absence of tumoral shrinkage, the adenoma was resected by the transsphenoidal route. METHODS: In vitro characterization of the somatostatin receptor subtypes (SSTR) expression and functionality. Real-time polymerase chain reaction was performed to quantify the expression of SSTR mRNAs and functionality of the SSTRs was assessed in cell culture studies with various concentrations of native somatostatin (SRIF-14) and of analogues preferential for SSTR2 or SSTR5. RESULTS: This adenoma presented with high levels of SSTR2, SSTR3 and SSTR5 mRNAs, as compared with a series of gonadotroph adenomas. In cell culture studies, PRL, LH and alpha-subunit were inhibited by 60%, 47% and 33% respectively by SRIF-14 at a concentration of 10 nmol/l. The SSTR2 (BIM-23197, lanreotide) and SSTR5 (BIM-23268) preferential analogues both produced a partial 21-38% inhibition of PRL, LH, and alpha-subunit release. DISCUSSION: In this plurihormonal-secreting adenoma, the high efficacy of somatostatin analogues to inhibit PRL, LH and alpha-subunit secretion in vivo may be explained by the unusually high level of expression and by the functionality of both SSTR2 and SSTR5 receptor subtypes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 426-426
Author(s):  
Carlos Caicedo-Carvajal ◽  
Qing Liu ◽  
Andre Goy ◽  
Andrew L Pecora ◽  
Anthony R Mato ◽  
...  

Abstract Abstract 426 One of the important challenges in screening anti-cancer drugs is the lack of available “primary cultures systems” that is easy to use to screen new compounds or their combinations. The low yield of primary cancer cell cultures is mainly due to suboptimum environment in vitro and inefficient 2-dimensional cell culture conditions. To create an optimum in vitro environment, lymphoma cell lines were grown in 3-dimension model by using a scaffold and the stromal cells derived from neonatal foreskin was used as the feeder component. This 3-dimensional (3D) stromal co-culture generates an in-vitro model that may mimic the conditions/microenvironment of blood cancer cells interacting with stromal compartments. A specific 3D tissue culture scaffold 3D Insert-PS™ (300 μ m in fiber diameter and 400μ m in pore size) significantly enhances the cell proliferation and maintenance of liquid cancer cells in comparison to 2D stromal co-culture control. The combination of the neonatal stroma cells, a novel 3D scaffold, the constant gyration and a frequent nutrient stimulation allows the lymphoma cells to proliferate 10-fold faster than the cells grown in 2D under the same condition. Starting from the 2nd day of 3D cell culture, these lymphoma cells grew to form layers of aggregated clusters and caused disappearance of single cells morphology and phenotype that is typical of cells growing in suspension. The cell aggregates are continuously produced from the 3D scaffold, subsequently dislodge from the scaffold and then remain viable at the bottom of the dish below the scaffold. When the cell clusters are harvested and cultured in 3D condition, the contamination of fibroblasts is over 1,000 fold less than the cell clusters that are generated from 2D environment. In addition, the clusters of cancer cells generated from 3D co-culture using 3D scaffolds contained the fibroblasts contamination that is less than 0.00001% of the total cell count, suggesting that this novel 3D environment can be implicated for the isolation of primary lymphoma/cancer cells from patient's blood or tissue specimen. To investigate this feasibility, <1% lymphoma cells were premixed with 100 fold excess of neonatal stroma cells, and the mixture was grown using our 3D scaffolds. In 7 days, the 3D culture system was able to amplify lymphoma cells over 100 fold or over 10,000 % of the starting cell number. This preliminary data indicate that this 3D scaffold and co-culturing environment can be customized to amplify primary cancer cells from blood or tumor tissues and subsequently used for personalized drug screening procedures. Disclosures: Goy: Allos Therapeutics, Inc.: Consultancy, Honoraria.


2004 ◽  
Vol 15 (7) ◽  
pp. 851-864 ◽  
Author(s):  
A. Motta ◽  
C. Migliaresi ◽  
F. Faccioni ◽  
P. Torricelli ◽  
M. Fini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document