scholarly journals Evaluation of Human Bone Marrow Mesenchymal Stromal Cell (MSC) Functions on a Biomorphic Rattan-Wood-Derived Scaffold: A Comparison between Cultured and Uncultured MSCs

2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Payal Ganguly ◽  
Jehan J. El-Jawhari ◽  
James Vun ◽  
Peter V. Giannoudis ◽  
Elena A. Jones

The reconstruction of large bone defects requires the use of biocompatible osteoconductive scaffolds. These scaffolds are often loaded with the patient’s own bone marrow (BM) cells to facilitate osteoinductivity and biological potency. Scaffolds that are naturally sourced and fabricated through biomorphic transitions of rattan wood (B-HA scaffolds) offer a unique advantage of higher mechanical strength and bioactivity. In this study, we investigated the ability of a biomorphic B-HA scaffold (B-HA) to support the attachment, survival and gene expression profile of human uncultured BM-derived mesenchymal stromal cells (BMSCs, n = 6) and culture expanded MSCs (cMSCs, n = 7) in comparison to a sintered, porous HA scaffold (S-HA). B-HA scaffolds supported BMSC attachment (average 98%) and their survival up to 4 weeks in culture. Flow cytometry confirmed the phenotype of cMSCs on the scaffolds. Gene expression indicated clear segregation between cMSCs and BMSCs with MSC osteogenesis- and adipogenesis-related genes including RUNX2, PPARγ, ALP and FABP4 being higher expressed in BMSCs. These data indicated a unique transcriptional signature of BMSCs that was distinct from that of cMSCs regardless of the type of scaffold or time in culture. There was no statistical difference in the expression of osteogenic genes in BMSCs or cMSCs in B-HA compared to S-HA. VEGF release from cMSCs co-cultured with human endothelial cells (n = 4) on B-HA scaffolds suggested significantly higher supernatant concentration with endothelial cells on day 14. This indicated a potential mechanism for providing vasculature to the repair area when such scaffolds are used for treating large bone defects.

2015 ◽  
Vol 21 (9-10) ◽  
pp. 1565-1578 ◽  
Author(s):  
Caroline Seebach ◽  
Dirk Henrich ◽  
Alexander Schaible ◽  
Borna Relja ◽  
Manfred Jugold ◽  
...  

2008 ◽  
Vol 2 (5) ◽  
pp. 253-262 ◽  
Author(s):  
P. Giannoni ◽  
M. Mastrogiacomo ◽  
M. Alini ◽  
S. G. Pearce ◽  
A. Corsi ◽  
...  

1987 ◽  
Vol 110 ◽  
Author(s):  
Masaaki Uratsuji ◽  
T. W. Bauer ◽  
S. I. Reger

The handling property and short term biological response to a new composite of fibrillar collagen (FC) and porous calcium phosphate (HA/TCP) were studied. A 4 mm by 20 mm defect was created in the femora of rabbits. The rabbits were divided into four treatment groups and sacrificed from each group at 4, 8 and 12 weeks. In each group, the defect was treated as follows: in Group I with autogenous bone marrow; in Group II with FC and HA/TCP; and in Group III with FC and HA/TCP with bone marrow in volume ratio of 3:1. In the fourth group, the defect was unfilled. The femora were excised and studied by microradiography or histology or both. The FC could improve the handling property of the HA/TCP granules. Although the composite of FC and HA/TCP was not osteoinductive, the defects in Groups II and III showed good healing at 12 weeks without signs of inflammation. The results showed the composite of FC and HA/TCP to be an effective filler for large bone defects especially when mixed with autogenous bone marrow.


2001 ◽  
Vol 344 (5) ◽  
pp. 385-386 ◽  
Author(s):  
Rodolfo Quarto ◽  
Maddalena Mastrogiacomo ◽  
Ranieri Cancedda ◽  
Sergei M. Kutepov ◽  
Vladimir Mukhachev ◽  
...  

2000 ◽  
Vol 192-195 ◽  
pp. 1053-0 ◽  
Author(s):  
Maurilio Marcacci ◽  
Elizaveta Kon ◽  
Rodolfo Quarto ◽  
Sergei M. Kutepov ◽  
Vladimir Mukhachev ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Noboru Matsumura ◽  
Kazuya Kaneda ◽  
Satoshi Oki ◽  
Hiroo Kimura ◽  
Taku Suzuki ◽  
...  

Abstract Background Significant bone defects are associated with poor clinical results after surgical stabilization in cases of glenohumeral instability. Although multiple factors are thought to adversely affect enlargement of bipolar bone loss and increased shoulder instability, these factors have not been sufficiently evaluated. The purpose of this study was to identify the factors related to greater bone defects and a higher number of instability episodes in patients with glenohumeral instability. Methods A total of 120 consecutive patients with symptomatic unilateral instability of the glenohumeral joint were retrospectively reviewed. Three-dimensional surface-rendered/registered models of bilateral glenoids and proximal humeri from computed tomography data were matched by software, and the volumes of bone defects identified in the glenoid and humeral head were assessed. After relationships between objective variables and explanatory variables were evaluated using bivariate analyses, factors related to large bone defects in the glenoid and humeral head and a high number of total instability episodes and self-irreducible dislocations greater than the respective 75th percentiles were evaluated using logistic regression analyses with significant variables on bivariate analyses. Results Larger humeral head defects (P < .001) and a higher number of total instability episodes (P = .032) were found to be factors related to large glenoid defects. On the other hand, male sex (P = .014), larger glenoid defects (P = .015), and larger number of self-irreducible dislocations (P = .027) were related to large humeral head bone defects. An increased number of total instability episodes was related to longer symptom duration (P = .001) and larger glenoid defects (P = .002), and an increased number of self-irreducible dislocations was related to larger humeral head defects (P = .007). Conclusions Whereas this study showed that bipolar lesions affect the amount of bone defects reciprocally, factors related to greater bone defects differed between the glenoid and the humeral head. Glenoid defects were related to the number of total instability episodes, whereas humeral head defects were related to the number of self-irreducible dislocations.


Sign in / Sign up

Export Citation Format

Share Document