scholarly journals Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 265 ◽  
Author(s):  
Larissa Lucena Périco ◽  
Maycon Tavares Emílio-Silva ◽  
Rie Ohara ◽  
Vinícius Peixoto Rodrigues ◽  
Gabriela Bueno ◽  
...  

Peptic ulcer disease (PUD) is a multifactorial and complex disease caused by an imbalance of protective and aggressive factors (endogenous and exogenous). Despite advances in recent years, it is still responsible for substantial mortality and triggering clinical problems. Over the last decades, the understanding of PUD has changed a lot with the discovery of Helicobacter pylori infection. However, this disease continues to be a challenge due to side-effects, incidence of relapse from use of various anti-ulcer medicines, and the rapid appearance of antimicrobial resistance with current H. pylori therapies. Consequently, there is the need to identify more effective and safe anti-ulcer agents. The search for new therapies with natural products is a viable alternative and has been encouraged. The literature reports the importance of monoterpenes based on the extensive pharmacological action of this class, including wound healing and anti-ulcerogenic agents. In the present study, 20 monoterpenes with anti-ulcerogenic properties were evaluated by assessing recent in vitro and in vivo studies. Here, we review the anti-ulcer effects of monoterpenes against ulcerogenic factors such as ethanol, nonsteroidal anti-inflammatory drugs (NSAIDs), and Helicobacter pylori, highlighting challenges in the field.

2020 ◽  
Author(s):  
Candace Goodman ◽  
Katrina Lyon ◽  
Aitana Scotto ◽  
Mandi M. Roe ◽  
Farimah Moghimpour ◽  
...  

AbstractHelicobacter pylori is an important bacterial pathogen that causes chronic infection of the human stomach, leading to gastritis, peptic ulcer disease and gastric cancer. Treatment with appropriate antibiotics can eliminate H. pylori infection and reduce the risk for severe disease outcomes. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed organic extracts and powders from black and red raspberries and blackberries and determined their antibacterial effects on multiple H. pylori strains. We used high-performance liquid chromatography to measure berry anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, we developed a high-throughput metabolic growth assay based on the OmniLog™ system. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. We next used human gastric epithelial organoids to evaluate biocompatibility of the berry preparations and showed that black raspberry extract, which had the strongest antimicrobial activity, was non-toxic at the concentration required for complete bacterial growth inhibition. To determine whether dietary black raspberry application could eliminate H. pylori infection in vivo, mice were infected with H. pylori and then were placed on a diet containing 10% black raspberry powder. However, this treatment did not significantly impact bacterial infection rates or gastric pathology. In summary, our data indicate that black and red raspberry and blackberry products have potential applications in the treatment and prevention of H. pylori infection, because of their antibacterial effects and good biocompatibility. However, delivery and formulation of berry compounds needs to be optimized to achieve significant antibacterial effects in vivo.


2019 ◽  
Vol 8 (1) ◽  
pp. 90 ◽  
Author(s):  
Yi-Hsing Chen ◽  
Wan-Hua Tsai ◽  
Hui-Yu Wu ◽  
Chun-Ya Chen ◽  
Wen-Ling Yeh ◽  
...  

The bacterial species, Helicobacter pylori, is associated with several gastrointestinal diseases, and poses serious health threats owing to its resistance to antibiotics. Lactobacillus spp., on the other hand, possess probiotic activities that have beneficial effects in humans. However, the mechanisms by which Lactobacillus spp. harbor favorable functions and act against H. pylori infection remain to be explored. The aim of this study was to investigate the ability of bacterial strains, Lactobacillus rhamnosus and Lactobacillus acidophilus, termed GMNL-74 and GMNL-185, respectively, to inhibit H. pylori growth and inflammation. Our results showed that GMNL-74 and GMNL-185 possess potent antimicrobial activity against multidrug resistant (MDR)-H. pylori. In addition, an in vitro cell-based model revealed that the inhibition of H. pylori adhesion and invasion of gastric epithelial cells and interleukin-8 production were significantly decreased by treatment with both the Lactobacillus strains. In vivo studies demonstrated that colonization of H. pylori and induced inflammation in the mouse stomach were also alleviated by these Lactobacillus strains. Furthermore, the abundance of beneficial gut bacteria, including Bifidobacterium spp. and Akkermansia muciniphilia, were significantly increased in H. pylori-infected mice treated with GMNL-74 and GMNL-185. These results demonstrate that Lactobacillus spp. ameliorate H. pylori-induced inflammation and supports beneficial gut specific bacteria that act against H. pylori infection.


2011 ◽  
Vol 80 (2) ◽  
pp. 594-601 ◽  
Author(s):  
Francisco Avilés-Jiménez ◽  
Adriana Reyes-Leon ◽  
Erik Nieto-Patlán ◽  
Lori M. Hansen ◽  
Juan Burgueño ◽  
...  

ABSTRACTThe best-studiedHelicobacter pylorivirulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is thecagpathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure thein vivoexpression of genes on thecagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC.In vivoexpression ofH. pylorivirulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, sincein vitroexpression ofcagAwas not greater inH. pyloristrains from patients with GC than in those from patients with NAG or DU, increased expression in GCin vivois likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable toH. pyloricolonization than the acidic environment in patients with NAG or DU.


2003 ◽  
Vol 71 (5) ◽  
pp. 2876-2880 ◽  
Author(s):  
Jafar Mahdavi ◽  
Thomas Borén ◽  
Christina Vandenbroucke-Grauls ◽  
Ben J. Appelmelk

ABSTRACT In vitro and in vivo studies from various groups have suggested that Helicobacter pylori lipopolysaccharide (LPS) Lewis x (Lex) antigens mediate bacterial adhesion. We have now reevaluated this hypothesis by studying the adherence in situ of H. pylori strain 11637 and its corresponding Lex-negative rfbM mutant to human gastric mucosa from patients (n = 22) with various gastric pathologies. Significant binding of the parent strain was observed in only 8 out of 22 sections; in four out of eight patients, the Lex-negative mutant bound less well. One of these four patients displayed no gastric abnormalities, and the other three showed dysplasia, metaplasia, and adenocarcinoma, respectively; hence, we are unable to define the circumstances under which LPS-mediated adhesion takes place. We conclude that H. pylori LPS plays a distinct but minor role in adhesion.


2018 ◽  
Vol 19 (8) ◽  
pp. 2361 ◽  
Author(s):  
Bahare Salehi ◽  
Farukh Sharopov ◽  
Miquel Martorell ◽  
Jovana Rajkovic ◽  
Adedayo Ademiluyi ◽  
...  

In this critical review, plant sources used as effective antibacterial agents against Helicobacter pylori infections are carefully described. The main intrinsic bioactive molecules, responsible for the observed effects are also underlined and their corresponding modes of action specifically highlighted. In addition to traditional uses as herbal remedies, in vitro and in vivo studies focusing on plant extracts and isolated bioactive compounds with anti-H. pylori activity are also critically discussed. Lastly, special attention was also given to plant extracts with urease inhibitory effects, with emphasis on involved modes of action.


Author(s):  
Isamu Kondo ◽  
Masashl Yamaguchi

Since Helicobacter pylori has recently been regarded as a possible causative agent of a chronic gastritis and a peptic ulcer disease, the susceptibilities of this organism to anti-ulcer agents or antibiotics have attracted much interest of not only clinical docters but also medicobiologists.We have reported that Sofalcone, a cytoprotective anti-ulcer drug, has anti-bacterial and bactericidal activity as well as TDS (tripotassium dicitrats bithmuthate) and Clarithromycin (a derivative of erythromycin), but the other anti-ulcer drugs Including anti-acid or H2 receptor antagonists such as cimetidine could not show such bacterial activity as those shown by the sofalcone (SFC), TDB, and clarithromycin (CLM). It was also found that therewere distinct differences between the morphological damage of H. pylori caused by SFC and those caused by TDB and CLM.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


2021 ◽  
Author(s):  
M. Lorena Harvey ◽  
Aung Soe Lin ◽  
Lili Sun ◽  
Tatsuki Koyama ◽  
Jennifer H. B. Shuman ◽  
...  

Helicobacter pylori genomes encode >60 predicted outer membrane proteins (OMPs). Several OMPs in the Hop family act as adhesins, but the functions of most Hop proteins are unknown. To identify hop mutant strains that exhibit altered fitness in vivo compared to fitness in vitro , we used a genetic barcoding method that allowed us to track changes in the proportional abundance of H. pylori strains within a mixed population. We generated a library of hop mutant strains, each containing a unique nucleotide barcode, as well as a library of control strains, each containing a nucleotide barcode in an intergenic region predicted to be a neutral locus unrelated to bacterial fitness. We orogastrically inoculated each of the libraries into mice and analyzed compositional changes in the populations over time in vivo compared to changes detected in the populations during library passage in vitro . The control library proliferated as a relatively stable community in vitro, but there was a reduction in the population diversity of this library in vivo and marked variation in the dominant strains recovered from individual animals, consistent with the existence of a non-selective bottleneck in vivo . We did not identify any OMP mutants exhibiting fitness defects exclusively in vivo without corresponding fitness defects in vitro . Conversely, a babA mutant exhibited a strong fitness advantage in vivo but not in vitro . These findings, when taken together with results of other studies, suggest that production of BabA may have differential effects on H. pylori fitness depending on the environmental conditions.


2005 ◽  
Vol 12 (12) ◽  
pp. 1378-1386 ◽  
Author(s):  
Dionyssios N. Sgouras ◽  
Effrosini G. Panayotopoulou ◽  
Beatriz Martinez-Gonzalez ◽  
Kalliopi Petraki ◽  
Spyros Michopoulos ◽  
...  

ABSTRACT In clinical settings, Lactobacillus johnsonii La1 administration has been reported to have a favorable effect on Helicobacter pylori-associated gastritis, although the mechanism remains unclear. We administered, continuously through the water supply, live La1 to H. pylori-infected C57BL/6 mice and followed colonization, the development of H. pylori-associated gastritis in the lamina propria, and the levels of proinflammatory chemokines macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived cytokine (KC) in the serum and gastric tissue over a period of 3 months. We documented a significant attenuation in both lymphocytic (P = 0.038) and neutrophilic (P = 0.003) inflammatory infiltration in the lamina propria as well as in the circulating levels of anti-H. pylori immunoglobulin G antibodies (P = 0.003), although we did not observe a suppressive effect of La1 on H. pylori colonizing numbers. Other lactobacilli, such as L. amylovorus DCE 471 and L. acidophilus IBB 801, did not attenuate H. pylori-associated gastritis to the same extent. MIP-2 serum levels were distinctly reduced during the early stages of H. pylori infection in the La1-treated animals, as were gastric mucosal levels of MIP-2 and KC. Finally, we also observed a significant reduction (P = 0.046) in H. pylori-induced interleukin-8 secretion by human adenocarcinoma AGS cells in vitro in the presence of neutralized (pH 6.8) La1 spent culture supernatants, without concomitant loss of H. pylori viability. These observations suggest that during the early infection stages, administration of La1 can attenuate H. pylori-induced gastritis in vivo, possibly by reducing proinflammatory chemotactic signals responsible for the recruitment of lymphocytes and neutrophils in the lamina propria.


2006 ◽  
Vol 74 (7) ◽  
pp. 4064-4074 ◽  
Author(s):  
Mónica Oleastro ◽  
Lurdes Monteiro ◽  
Philippe Lehours ◽  
Francis Mégraud ◽  
Armelle Ménard

ABSTRACT Peptic ulcer disease (PUD) occurs after a long-term Helicobacter pylori infection. However, the disease can develop earlier, and rare cases have been observed in children, suggesting that these H. pylori strains may be more virulent. We used suppressive subtractive hybridization for comparative genomics between H. pylori strains isolated from a 5-year-old child with duodenal ulcer and from a sex- and age-matched child with gastritis only. The prevalence of the 30 tester-specific subtracted sequences was determined on a collection of H. pylori strains from children (15 ulcers and 30 gastritis) and from adults (46 ulcers and 44 gastritis). Two of these sequences, jhp0562 (80.0% versus 33.3%, P = 0.008) and jhp0870 (80.0% versus 36.7%, P = 0.015), were highly associated with PUD in children and a third sequence, jhp0828, was less associated (40.0% versus 10.0%, P = 0.048). Among adult strains, none of the 30 sequences was associated with PUD. However, both jhp0562 and jhp0870 were less prevalent in adenocarcinoma strains than in PUD strains from children and adults, the difference being statistically significant for jhp0870. In conclusion, two H. pylori genes were identified as being strongly associated with PUD in children, and their putative roles as an outer membrane protein for jhp0870 and in lipopolysaccharide biosynthesis for jhp0562, suggest that they may be novel virulence factors of H. pylori.


Sign in / Sign up

Export Citation Format

Share Document