scholarly journals AimR Adopts Preexisting Dimer Conformations for Specific Target Recognition in Lysis-Lysogeny Decisions of Bacillus Phage phi3T

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1321
Author(s):  
Kai Pei ◽  
Jie Zhang ◽  
Tingting Zou ◽  
Zhu Liu

A bacteriophage switches between lytic and lysogenic life cycles. The AimR-AimP-AimX communication system is responsible for phage lysis-lysogeny decisions during the infection of Bacillus subtilis. AimX is a regulator biasing phage lysis, AimR is a transcription factor activating AimX expression, and AimP is an arbitrium peptide that determines phage lysogeny by deactivating AimR. A strain-specific mechanism for the lysis-lysogeny decisions is proposed in SPbeta and phi3T phages. That is, the arbitrium peptide of the SPbeta phage stabilizes the SPbeta AimR (spAimR) dimer, whereas the phi3T-derived peptide disassembles the phi3T AimR (phAimR) dimer into a monomer. Here, we find that phAimR does not undergo dimer-to-monomer conversion upon arbitrium peptide binding. Gel-filtration, static light scattering (SLS) and analytical ultracentrifugation (AUC) results show that phAimR is dimeric regardless of the presence of arbitrium peptide. Small-angle X-ray scattering (SAXS) reveals that the arbitrium peptide binding makes an extended dimeric conformation. Single-molecule fluorescence resonance energy transfer (smFRET) analysis reveals that the phAimR dimer fluctuates among two distinct conformational states, and each preexisting state is selectively recognized by the arbitrium peptide or the target DNA, respectively. Collectively, our biophysical characterization of the phAimR dynamics underlying specific target recognition provides new mechanistic insights into understanding lysis-lysogeny decisions in Bacillus phage phi3T.

2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2018 ◽  
Author(s):  
Alexander Carl DeHaven

This thesis contains four topic areas: a review of single-molecule microscropy methods and splicing, conformational dynamics of stem II of the U2 snRNA, the impact of post-transcriptional modifications on U2 snRNA folding dynamics, and preliminary findings on Mango aptamer folding dynamics.


2021 ◽  
Author(s):  
Théo Le Moigne ◽  
Libero Gurrieri ◽  
Pierre Crozet ◽  
Christophe H. Marchand ◽  
Mirko Zaffagnini ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michelle Cutajar ◽  
Fabrizio Andriulo ◽  
Megan R. Thomsett ◽  
Jonathan C. Moore ◽  
Benoit Couturaud ◽  
...  

AbstractThere is currently a pressing need for the development of novel bioinspired consolidants for waterlogged, archaeological wood. Bioinspired materials possess many advantages, such as biocompatibility and sustainability, which makes them ideal to use in this capacity. Based on this, a polyhydroxylated monomer was synthesised from α-pinene, a sustainable terpene feedstock derived from pine trees, and used to prepare a low molar mass polymer TPA5 through free radical polymerisation. This polymer was extensively characterised by NMR spectroscopy (chemical composition) and molecular hydrodynamics, primarily using analytical ultracentrifugation reinforced by gel filtration chromatography and viscometry, in order to investigate whether it would be suitable for wood consolidation purposes. Sedimentation equilibrium indicated a weight average molar mass Mw of (4.3 ± 0.2) kDa, with minimal concentration dependence. Further analysis with MULTISIG revealed a broad distribution of molar masses and this heterogeneity was further confirmed by sedimentation velocity. Conformation analyses with the Perrin P and viscosity increment ν universal hydrodynamic parameters indicated that the polymer had an elongated shape, with both factors giving consistent results and a consensus axial ratio of ~ 4.5. These collective properties—hydrogen bonding potential enhanced by an elongated shape, together with a small injectable molar mass—suggest this polymer is worthy of further consideration as a potential consolidant.


Author(s):  
Hsin-Chih Yeh ◽  
Christopher M. Puleo ◽  
Yi-Ping Ho ◽  
Tza-Huei Wang

In this report, we review several single-molecule detection (SMD) methods and newly developed nanocrystal-mediated single-fluorophore strategies for ultrasensitive and specific analysis of genomic sequences. These include techniques, such as quantum dot (QD)-mediated fluorescence resonance energy transfer (FRET) technology and dual-color fluorescence coincidence and colocalization analysis, which allow separation-free detection of low-abundance DNA sequences and mutational analysis of oncogenes. Microfluidic approaches developed for use with single-molecule detection to achieve rapid, low-volume, and quantitative analysis of nucleic acids, such as electrokinetic manipulation of single molecules and confinement of sub-nanoliter samples using microfluidic networks integrated with valves, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document