scholarly journals GABA Levels in Left and Right Sensorimotor Cortex Correlate across Individuals

Biomedicines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 80 ◽  
Author(s):  
Nicolaas Puts ◽  
Stefanie Heba ◽  
Ashley Harris ◽  
Christopher Evans ◽  
David McGonigle ◽  
...  

Differences in γ-aminobutyric acid (GABA) levels measured with Magnetic Resonance Spectroscopy have been shown to correlate with behavioral performance over a number of tasks and cortical regions. These correlations appear to be regionally and functionally specific. In this study, we test the hypothesis that GABA levels will be correlated within individuals for functionally related regions—the left and right sensorimotor cortex. In addition, we investigate whether this is driven by bulk tissue composition. GABA measurements using edited MRS data were acquired from the left and right sensorimotor cortex in 24 participants. T1-weighted MR images were also acquired and segmented to determine the tissue composition of the voxel. GABA level is shown to correlate significantly between the left and right regions (r = 0.64, p < 0.03). Tissue composition is highly correlated between sides, but does not explain significant variance in the bilateral correlation. In conclusion, individual differences in GABA level, which have previously been described as functionally and regionally specific, are correlated between homologous sensorimotor regions. This correlation is not driven by bulk differences in voxel tissue composition.

Author(s):  
Raymand Pang ◽  
Adnan Avdic-Belltheus ◽  
Christopher Meehan ◽  
Kathryn Martinello ◽  
Tatenda Mutshiya ◽  
...  

Abstract As therapeutic hypothermia is only partially protective for neonatal encephalopathy, safe and effective adjunct therapies are urgently needed. Melatonin and erythropoietin show promise as safe and effective neuroprotective therapies. We hypothesized that melatonin and erythropoietin individually augment 12-hour hypothermia (double therapies) and hypothermia + melatonin + erythropoietin (triple therapy) leads to optimal brain protection. Following carotid artery occlusion and hypoxia, 49 male piglets (&lt;48 hours old) were randomized to: (i) hypothermia + vehicle (n = 12), (ii) hypothermia + melatonin (20 mg/kg over 2 hours) (n = 12), (iii) hypothermia + erythropoietin (3000 U/kg bolus) (n = 13) or (iv) triple therapy (n = 12). Melatonin, erythropoietin or vehicle were given at 1, 24 and 48 hours after hypoxia-ischemia. Hypoxia-ischemia severity was similar across groups. Therapeutic levels were achieved 3 hours after hypoxia-ischemia for melatonin (15-30mg/L) and within 30 minutes of erythropoietin administration (maximum concentration 10,000 mU/mL). Compared to hypothermia + vehicle, we observed faster amplitude integrated EEG recovery from 25-30 hours with hypothermia + melatonin (p = 0.02) and hypothermia + erythropoietin (p = 0.033) and from 55-60 hours with triple therapy (p = 0.042). Magnetic Resonance Spectroscopy Lactate/N-acetyl aspartate peak ratio was lower at 66 hours in hypothermia + melatonin (p = 0.012) and triple therapy (p = 0.032). With hypothermia + melatonin, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells were reduced in sensorimotor cortex (p = 0.017) and oligodendrocyte transcription factor 2 labelled-positive counts increased in hippocampus (p = 0.014) and periventricular white matter (p = 0.039). There was no reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells with hypothermia + erythropoietin, but increased oligodendrocyte transcription factor 2 labelled-positive cells in 5 of 8 brain regions (p &lt; 0.05). Overall, melatonin and erythropoietin were safe and effective adjunct therapies to hypothermia. Hypothermia + melatonin double therapy led to faster amplitude integrated EEG recovery, amelioration of Lactate/N-acetyl aspartate rise and reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells in the sensorimotor cortex. Hypothermia + erythropoietin double therapy was association with EEG recovery and was most effective in promoting oligodendrocyte survival. Triple therapy provided no added benefit over the double therapies in this 72-hour study. Melatonin and erythropoietin influenced cell death and oligodendrocyte survival differently, reflecting distinct neuroprotective mechanisms which may become more visible with longer term studies. Staggering the administration of therapies with early melatonin and later erythropoietin (after hypothermia) may provide better protection; each therapy has complementary actions which may be time critical during the neurotoxic cascade after hypoxia-ischemia.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 898
Author(s):  
Marta Saiz-Vivó ◽  
Adrián Colomer ◽  
Carles Fonfría ◽  
Luis Martí-Bonmatí ◽  
Valery Naranjo

Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed to manual segmentation, an error-prone and time-consuming method. However, to optimize DL algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work is to develop automatic and high-performance computational models for left and right atrium (LA and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm. For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a network trained with balanced steady-state free precession (bSSFP) MR images of limited number of annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice equals 0.8813) segmentation tasks.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Aziza Mounach ◽  
Asmaa Rezqi ◽  
Imad Ghozlani ◽  
Lahsen Achemlal ◽  
Ahmed Bezza ◽  
...  

To determine the prevalence of significant left-right differences in hip bone mineral density (BMD), and the impact of this difference on osteoporosis diagnosis, we measured bilateral proximal femora using dual energy X-ray absorptiometry (DXA) in 3481 subjects (608 males, 2873 females). The difference between left and right hip was considered significant if it exceeded the smallest detectable difference (SDD) for any of the three hip subregions. Contralateral femoral BMD was highly correlated at all measuring sites (–0.95). However, significant left-right differences in BMD were common: the difference exceeded the SDD for 54% of patients at total hip, 52.1% at femoral neck, and 57.7% at trochanter. The prevalence of left-right differences was greater in participants >65 years. For 1169 participants with normal spines, 22 (1.9%) had discordant left-right hips in which one hip was osteoporotic; for 1349 patients with osteopenic spines, 94 (7%) had osteoporosis in one hip. Participants with BMI < 20 kg/m2 were more likely to show major T-score discordance (osteoporosis in one hip and normal BMD in the other). Multiple regression analysis showed that the only significant statically parameter that persists after adjusting for all potential confounding parameters were age over 65 years.


Author(s):  
J. Schaerer ◽  
Y. Rouchdy ◽  
P. Clarysse ◽  
B. Hiba ◽  
P. Croisille ◽  
...  

1996 ◽  
Vol 16 (5) ◽  
pp. 755-764 ◽  
Author(s):  
Nick F. Ramsey ◽  
Brenda S. Kirkby ◽  
Peter Van Gelderen ◽  
Karen F. Berman ◽  
Jeff H. Duyn ◽  
...  

Positron emission tomography (PET) functional imaging is based on changes in regional cerebral blood flow (rCBF). Functional magnetic resonance imaging (fMRI) is based on a variety of physiological parameters as well as rCBF. This study is aimed at the cross validation of three-dimensional (3D) fMRI, which is sensitive to changes in blood oxygenation, with oxygen-15-labeled water (H215O) PET. Nine normal subjects repeatedly performed a simple finger opposition task during fMRI scans and during PET scans. Within-subject statistical analysis revealed significant (“activated”) signal changes ( p < 0.05, Bonferroni corrected for number of voxels) in contralateral primary sensorimotor cortex (PSM) in all subjects with fMRI and with PET. With both methods, 78% of all activated voxels were located in the PSM. Overlap of activated regions occurred in all subjects (mean 43%, SD 26%). The size of the activated regions in PSM with both methods was highly correlated ( rho = 0.87, p < 0.01). The mean distance between centers of mass of the activated regions in the PSM for fMRI versus PET was 6.7 mm (SD 3.0 mm). Average magnitude of signal change in activated voxels in this region, expressed as z-values adapted to timeseries, zt, was similar (fMRI 5.5, PET 5.3). Results indicate that positive blood oxygen level-dependent (BOLD) signal changes obtained with 3D principles of echo shifting with a train of observations (PRESTO) fMRI are correlated with rCBF, and that sensitivity of fMRI can equal that of H215O PET.


2008 ◽  
Vol 27 (4) ◽  
pp. 785-792 ◽  
Author(s):  
Francesco Sardanelli ◽  
Matteo Quarenghi ◽  
Giovanni Di Leo ◽  
Leonardo Boccaccini ◽  
Angelo Schiavi

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xuanzi He ◽  
Bang-Bon Koo ◽  
Ronald J. Killiany

Recent research had shown a correlation between aging and decreasing Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. However, how GABA level varies with age in the medial portion of the brain has not yet been studied. The purpose of this study was to investigate the GABA level variation with age focusing on the posterior cingulate cortex, which is the “core hub” of the default mode network. In this study, 14 monkeys between 4 and 21 years were recruited, and MEGA-PRESS MRS was performed to measure GABA levels, in order to explore a potential link between aging and GABA. Our results showed that a correlation between age and GABA+/Creatine ratio was at the edge of significance (r=-0.523,p=0.081). There was also a near-significant trend between gray matter/white matter ratio and the GABA+/Creatine ratio (r=-0.518,p=0.0848). Meanwhile, the correlation between age and grey matter showed no significance (r=-0.028,p=0.93). Therefore, age and gray matter/white matter ratio account for different part ofR-squared (adjustedR-squared = 0.5187) as independent variables for predicting GABA levels. AdjustedR-squared is about 0.5 for two independent variables. These findings suggest that there is internal neurochemical variation of GABA levels in the nonhuman primates associated with normal aging and structural brain decline.


2020 ◽  
Vol 20 (10) ◽  
pp. 2040040
Author(s):  
YONG CHEOL KIM ◽  
YOON HEO ◽  
KI-TAE NAM ◽  
GYOO SUK KIM ◽  
EUNG-PYO HONG

The purpose of this study was to design and validate a new bilateral instrumented wheel system (IWS) to measure triaxial handrim forces and torques simultaneously during the wheelchair propulsion. The designed and implemented system measures the force applied to the handrims on both sides of a manual wheelchair using 6-axis force/torque sensors. In addition, a user interface receives the measurements from the left and right IWSs. To verify the accuracy of the wheel system, we evaluate force and torque measurements during the static and dynamic tests. The maximum error in static measurements of force and torque are 4.29% and 1.95%, respectively. Likewise, dynamic tests using planar forces and axle torques provide low errors and measurements that are highly correlated with the expected values ([Formula: see text]). The results revealed that the proposed IWS can be used to measure bilateral 3D handrim reaction forces with acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document