scholarly journals From Orai to E-Cadherin: Subversion of Calcium Trafficking in Cancer to Drive Proliferation, Anoikis-Resistance, and Metastasis

Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 169
Author(s):  
Aarushi Sharma ◽  
Randolph C. Elble

The common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes. Intracellular calcium acts chiefly through intermediates such as calmodulin that regulates growth factor receptors such as epidermal growth factor receptor (EGFR), actin polymerization, and adherens junction assembly and maintenance. Here we review this machinery and its role in differentiation, then consider how cancer cells subvert it to license proliferation, resist anoikis, and enable metastasis, either by modulating the level of intracellular calcium or its downstream targets or effectors such as EGFR, E-cadherin, IQGAP1, TMEM16A, CLCA2, and TRPA1. Implications are considered for the roles of E-cadherin and growth factor receptors in circulating tumor cells and metastasis. The discovery of novel, cell type-specific modulators and effectors of calcium signaling offers new possibilities for cancer chemotherapy.

2018 ◽  
Vol 131 (6) ◽  
pp. jcs206656 ◽  
Author(s):  
Poonam Sehgal ◽  
Xinyu Kong ◽  
Jun Wu ◽  
Raimon Sunyer ◽  
Xavier Trepat ◽  
...  

2011 ◽  
Vol 104 (2) ◽  
pp. 220-221 ◽  
Author(s):  
Laura R. Nery ◽  
Mariana M. Rodrigues ◽  
Denis B. Rosemberg ◽  
Maurício R. Bogo ◽  
Caroline B. De Farias ◽  
...  

2009 ◽  
Vol 296 (2) ◽  
pp. G235-G244 ◽  
Author(s):  
Verónica-Haydée Lugo-Martínez ◽  
Constance S. Petit ◽  
Stéphane Fouquet ◽  
Johanne Le Beyec ◽  
Jean Chambaz ◽  
...  

Enterocytes of the intestinal epithelium are continually regenerated. They arise from precursor cells in crypts, migrate along villi, and finally die, 3–4 days later, when they reach the villus apex. Their death is thought to occur by anoikis, a form of apoptosis induced by cell detachment, but the mechanism of this process remains poorly understood. We have previously shown that a key event in the onset of anoikis in normal enterocytes detached from the basal lamina is the disruption of adherens junctions mediated by E-cadherin (Fouquet S, Lugo-Martinez VH, Faussat AM, Renaud F, Cardot P, Chambaz J, Pincon-Raymond M, Thenet S. J Biol Chem 279: 43061–43069, 2004). Here we have further investigated the mechanisms underlying this disassembly of the adherens junctions. We show that disruption of the junctions occurs through endocytosis of E-cadherin and that this process depends on the tyrosine-kinase activity of the epidermal growth factor receptor (EGFR). Activation of EGFR was detected in detached enterocytes before E-cadherin disappearance. Specific inhibition of EGFR by tyrphostin AG-1478 maintained E-cadherin and its cytoplasmic partners β- and α-catenin at cell-cell contacts and decreased anoikis. Finally, EGFR activation was evidenced in the intestinal epithelium in vivo, in rare individual cells, which were shown to lose their interactions with the basal lamina. We conclude that EGFR is activated as enterocytes become detached from the basal lamina, and that this mechanism contributes to the disruption of E-cadherin-dependent junctions leading to anoikis. This suggests that EGFR participates in the physiological elimination of the enterocytes.


2019 ◽  
Vol 133 (12) ◽  
pp. 1309-1320 ◽  
Author(s):  
Feng Liu ◽  
George Bayliss ◽  
Shougang Zhuang

Abstract Nintedanib, a Food and Drug Administration-approved drug for the treatment of patients with idiopathic pulmonary fibrosis (IPK), inhibits both tyrosine kinase receptors and non-receptor kinases, and block activation of platelet-derived growth factor receptors, fibroblast growth factor receptor, vascular endothelial growth factor receptors, and Src family kinases. Preclinical and clinical studies have revealed the potent anti-fibrotic effect of nintedanib in IPK in human and animal models. Recent preclinical studies have also demonstrated the inhibitory effect of nintedanib on the development and progression of tissue fibrosis in other organs, including liver, kidney, and skin. The anti-fibrotic actions of nintedanib occur through a number of mechanisms, including blocking differentiation of fibroblasts to myofibroblasts, inhibition of epithelial–mesenchymal transition, and suppression of inflammation and angiogenesis. In this article, we summarize the mechanisms and efficacy of nintedanib in the treatment of fibrotic diseases in animal models and clinical trials, provide an update on recent advances in the development of other novel antifibrotic agents in preclinical and clinical study, and offer our perspective about the possible clinical application of these agents in fibrotic diseases.


2015 ◽  
Vol 47 (2) ◽  
pp. 24-32 ◽  
Author(s):  
Jen X. Xu ◽  
Tzong-Shi Lu ◽  
Suyan Li ◽  
Yong Wu ◽  
Lai Ding ◽  
...  

Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023 X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.


2011 ◽  
Vol 39 (2) ◽  
pp. 568-573 ◽  
Author(s):  
Xanthippi Alexi ◽  
Fedor Berditchevski ◽  
Elena Odintsova

Integrins and growth factor receptors of the ErbB family are involved in the regulation of cellular interactions with the extracellular microenvironment. Cross-talk between these two groups of transmembrane receptors is essential for cellular responses and can be regulated through the formation of multimolecular complexes. Tetraspanins as facilitators and building blocks of specialized microdomains may be involved in this process. In the present study, we demonstrated that, in contrast with previous reports, integrin-mediated adhesion did not stimulate ligand-independent activation of ErbB receptors in epithelial cells. However, integrin-dependent adhesion potentiated ligand-induced activation of EGFR (epidermal growth factor receptor) and ErbB2 and facilitated receptor homo- and hetero-dimerization. The actin cytoskeleton appeared to play a critical role in this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document