scholarly journals Inhibition of Hsp90 Counteracts the Established Experimental Dermal Fibrosis Induced by Bleomycin

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 650
Author(s):  
Hana Štorkánová ◽  
Lenka Štorkánová ◽  
Adéla Navrátilová ◽  
Viktor Bečvář ◽  
Hana Hulejová ◽  
...  

Our previous study demonstrated that heat shock protein 90 (Hsp90) is overexpressed in the involved skin of patients with systemic sclerosis (SSc) and in experimental dermal fibrosis. Pharmacological inhibition of Hsp90 prevented the stimulatory effects of transforming growth factor-beta on collagen synthesis and the development of dermal fibrosis in three preclinical models of SSc. In the next step of the preclinical analysis, herein, we aimed to evaluate the efficacy of an Hsp90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in the treatment of established experimental dermal fibrosis induced by bleomycin. Treatment with 17-DMAG demonstrated potent antifibrotic and anti-inflammatory properties: it decreased dermal thickening, collagen content, myofibroblast count, expression of transforming growth factor beta receptors, and pSmad3-positive cell counts, as well as leukocyte infiltration and systemic levels of crucial cytokines/chemokines involved in the pathogenesis of SSc, compared to vehicle-treated mice. 17-DMAG effectively prevented further progression and may induce regression of established bleomycin-induced dermal fibrosis to an extent comparable to nintedanib. These findings provide further evidence of the vital role of Hsp90 in the pathophysiology of SSc and characterize it as a potential target for the treatment of fibrosis with translational implications due to the availability of several Hsp90 inhibitors in clinical trials for other indications.

1994 ◽  
Vol 266 (6) ◽  
pp. F829-F842 ◽  
Author(s):  
K. Sharma ◽  
F. N. Ziyadeh

Transforming growth factor-beta (TGF-beta) is a prototypical multifunctional cytokine, with growth being only one of its many functions. Its receptors and actions are germane to almost every cell in the body involved in tissue injury and repair, and its effects are best understood in the context of a cellular response to a changing environment. The broad areas in which TGF-beta plays a crucial role include cell proliferation and extracellular matrix production. TGF-beta is a key regulatory molecule in the control of the activity of fibroblasts and has been implicated in several disease states characterized by excessive fibrosis. In the kidney, TGF-beta promotes tubuloepithelial cell hypertrophy and regulates the glomerular production of almost every known molecule of the extracellular matrix, including collagens, fibronectin, tenascin, and proteoglycans, as well as the integrins that are the receptors for these molecules. Furthermore, TGF-beta blocks the destruction of newly synthesized extracellular matrix by upregulating the synthesis of protease inhibitors and downregulating the synthesis of matrix-degrading proteases such as stromelysin and collagenase. As will be discussed, there is a strong body of in vitro and in vivo evidence suggesting that persistent overproduction of TGF-beta 1 in glomeruli after the acute inflammatory stage of glomerulonephritis causes glomerulosclerosis. TGF-beta may also be important in a variety of other chronic renal disorders characterized by hypertrophy and sclerosis, such as diabetic nephropathy. In this review we will attempt to offer a basic understanding of the cellular and molecular biology of TGF-beta and its receptors, with special focus on the role of the TGF-beta system in the kidney during development, growth, and disease.


Sign in / Sign up

Export Citation Format

Share Document