scholarly journals Local Delivery of Pirfenidone by PLA Implants Modifies Foreign Body Reaction and Prevents Fibrosis

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 853
Author(s):  
Alexey Fayzullin ◽  
Semyon Churbanov ◽  
Natalia Ignatieva ◽  
Olga Zakharkina ◽  
Mark Tokarev ◽  
...  

Peri-implant fibrosis (PIF) increases the postsurgical risks after implantation and limits the efficacy of the implantable drug delivery systems (IDDS). Pirfenidone (PF) is an oral anti-fibrotic drug with a short (<3 h) circulation half-life and strong adverse side effects. In the current study, disk-shaped IDDS prototype combining polylactic acid (PLA) and PF, PLA@PF, with prolonged (~3 days) PF release (in vitro) was prepared. The effects of the PLA@PF implants on PIF were examined in the rabbit ear skin pocket model on postoperative days (POD) 30 and 60. Matching blank PLA implants (PLA0) and PLA0 with an equivalent single-dose PF injection performed on POD0 (PLA0+injPF) served as control. On POD30, the intergroup differences were observed in α-SMA, iNOS and arginase-1 expressions in PLA@PF and PLA0+injPF groups vs. PLA0. On POD60, PIF was significantly reduced in PLA@PF group. The peri-implant tissue thickness decreased (532 ± 98 µm vs. >1100 µm in control groups) approaching the intact derma thickness value (302 ± 15 µm). In PLA@PF group, the implant biodegradation developed faster, while arginase-1 expression was suppressed in comparison with other groups. This study proves the feasibility of the local control of fibrotic response on implants via modulation of foreign body reaction with slowly biodegradable PF-loaded IDDS.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiaxi Chen ◽  
Huiqun Zhou ◽  
Daping Xie ◽  
Yiming Niu

Abstract Background Implantation of a biomaterial may induce the foreign-body reaction to the host tissue that determines the outcome of the integration and the biological performance of the implants. The foreign-body reaction can be modulated by control of the material properties of the implants. Methods First, we synthesized methacrylated Bletilla striata Polysaccharide (BSP-MA) and constructed a series of open porous cryogels utilizing this material via the freezing-thawing treatment of solvent-precursors systems. Second, Pore size and modulus were measured to characterize the properties of BSP cryogels. Live/dead staining of cells and CCK-8 were performed to test the cytocompatibility of the scaffolds. In addition, the Real-Time qPCR experiments were carried for the tests. Finally, the BSP scaffolds were implanted subcutaneously to verify the foreign-body reaction between host tissue and materials. Results Our data demonstrated that cryogels with different pore sizes and modulus can be fabricated by just adjusting the concentration. Besides, the cryogels showed well cytocompatibility in the in vitro experiments and exhibited upregulated expression levels of pro-inflammation-related genes (Tnfa and Il1b) with the increase of pore size. In vivo experiments further proved that with the increase of pore size, more immune cells infiltrated into the inner zone of materials. The foreign-body reaction and the distribution of immune-regulatory cells could be modulated by tuning the material microstructure. Conclusions Collectively, our findings revealed Bletilla striata polysaccharide cryogel scaffold with different pore sizes can spatially control foreign-body reaction. The microstructure of cryogels could differentially guide the distribution of inflammatory cells, affect the formation of blood vessels and fibrous capsules, which eventually influence the material-tissue integration. This work demonstrates a practical strategy to regulate foreign body reaction and promote the performance of medical devices.


2021 ◽  
Vol 8 (12) ◽  
pp. 205
Author(s):  
Alexey Fayzullin ◽  
Alesia Bakulina ◽  
Karen Mikaelyan ◽  
Anatoly Shekhter ◽  
Anna Guller

Precise delivery of therapeutics to the target structures is essential for treatment efficiency and safety. Drug administration via conventional routes requires overcoming multiple transport barriers to achieve and maintain the local drug concentration and commonly results in unwanted off-target effects. Patients’ compliance with the treatment schedule remains another challenge. Implantable drug delivery systems (IDDSs) provide a way to solve these problems. IDDSs are bioengineering devices surgically placed inside the patient’s tissues to avoid first-pass metabolism and reduce the systemic toxicity of the drug by eluting the therapeutic payload in the vicinity of the target tissues. IDDSs present an impressive example of successful translation of the research and engineering findings to the patient’s bedside. It is envisaged that the IDDS technologies will grow exponentially in the coming years. However, to pave the way for this progress, it is essential to learn lessons from the past and present of IDDSs clinical applications. The efficiency and safety of the drug-eluting implants depend on the interactions between the device and the hosting tissues. In this review, we address this need and analyze the clinical landscape of the FDA-approved IDDSs applications in the context of the foreign body reaction, a key aspect of implant–tissue integration.


In Vivo ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 337-347 ◽  
Author(s):  
TOBIAS VOLLKOMMER ◽  
ANDERS HENNINGSEN ◽  
REINHARD E. FRIEDRICH ◽  
OLIVER HEINRICH FELTHAUS ◽  
FABIAN EDER ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cindy Yi Chi Hsieh ◽  
Fang-Wei Hu ◽  
Wen-Shiang Chen ◽  
Wei-Bor Tsai

Biological response against foreign implants often leads to encapsulation, possibly resulting in malfunction of implants devices. The aim of this study was to reduce the foreign body reaction by surface modification of biomaterials through layer-by-layer deposition of type I collagen (COL)/hyaluronic acid (HA) multilayer films. Polydimethylsiloxane (PDMS) samples were coated with alternative COL and HA layers with different layers. We found that the in vitro adhesion, proliferation, and activation of macrophage-like cells were greatly decreased by COL/HA multilayered deposition. The PDMS samples modified with 20 bilayers of COL/HA were implanted in rats for 3 weeks, and the thickness of encapsulation surrounding the samples was decreased by 29–57% compared to the control unmodified PDMS. This study demonstrates the potential of COL/HA multilayer films to reduce foreign body reaction.


2021 ◽  
Author(s):  
Jiaxi Chen ◽  
Huiqun Zhou ◽  
Daping Xie ◽  
Yiming Niu

Abstract BackgroundImplantation of a biomaterial may induce the foreign-body reaction to the host tissue that determines the outcome of the integration and the biological performance of the implant. The level of foreign-body reaction can be modulated by material properties.MethodsFirst, we synthesized methacrylated Bletilla striata Polysaccharide (BSP-MA) and constructed a series of open porous cryogels utilizing this material via the freezing-thawing treatment of solvent-precursors systems. Second, Pore size and rheology were measured to characterize the material properties of cryogels. Live/dead staining of cells and CCK-8 was performed to test the cytocompatibility of the scaffolds. In addition, the Real-Time qPCR experiments were carried for in vitro tests. Finally, the BSP scaffolds were implanted subcutaneously to verify the foreign-body reaction between host tissue and materials.ResultsOur data demonstrated that cryogels with different pore sizes and modulus can be fabricated by just adjusting the concentration. Besides, the cryogels show well cytocompatibility in the in vitro experiments and exhibited upregulated expression levels of pro-inflammation-related genes (Tnfa and Il1b) with the increase of pore size. In vivo experiments further proved that with the increase of pore size, more immune cells infiltrated into the inner zone of materials. The foreign-body reaction and the distribution of immune-regulatory cells could be modulated by tuning the material microstructure.ConclusionsCollectively, our findings revealed Bletilla striata polysaccharide cryogel scaffold with different pore sizes can spatially control foreign-body reaction. The microstructure of cryogels could differentially guide the distribution of inflammatory cells, affect the formation of blood vessels and fibrous capsules, which eventually influence the material-tissue integration. This work demonstrates a practical strategy to regulate foreign body response and promote the performance of medical devices.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S792-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang ◽  
Urania Rappo

Abstract Background AmpC overproduction is a main mechanism of carbapenem resistance, in the absence of acquired carbapenemases. Ceftazidime-avibactam (CAZ-AVI) has potent in vitro activity against AmpC-producing P. aeruginosa and Enterobacterales that are resistant to carbapenems and other β-lactams. Methods Activity of CAZ-AVI and comparators was evaluated against AmpC-overproducing Enterobacterales (n=77) and P. aeruginosa (n=53) collected from 4 CAZ-AVI clinical trials: RECLAIM (complicated intra-abdominal infection [cIAI]), REPRISE (cIAI/complicated urinary tract infection [cUTI]), RECAPTURE (cUTI) and REPROVE (hospital-acquired pneumonia/ventilator associated pneumonia). In vitro susceptibility of CAZ-AVI and comparators was performed by broth microdilution using ThermoFisher custom panels. CLSI breakpoints were used to determine susceptibility. Quantitative PCR and microarray data were used to characterize presence and expression of AmpC. Clinical response at test of cure was assessed. Results Against 77 AmpC-overproducing Enterobacterales isolates, meropenem-vaborbactam (MVB) (98.7% susceptible [S]), CAZ-AVI (96.1% S), and meropenem (MEM) (96.1% S) had similar in vitro activity (Table), with greater in vitro activity than amikacin (AMK) (84.4% S), gentamicin (61.0% S), and ceftolozane-tazobactam (TZC) (35.1% S). Clinical cures in patients with baseline AmpC-overproducing Enterobacterales were 21/26 (81%) in CAZ-AVI group vs 17/20 (85%) in control groups. Against 53 AmpC-overproducing P. aeruginosa isolates, CAZ-AVI (73.6% S) showed greater in vitro activity than AMK (69.8% S), TZC (58.5% S), and MEM (37.7% S). Clinical cures in patients with baseline AmpC-overproducing P. aeruginosa were 12/14 (86%) in CAZ-AVI group vs 9/12 (75%) in control groups. MIC distributions against the same P aeruginosa isolates were CAZ-AVI (MIC50/90, 4/ &gt;64 µg/mL), MVB (MIC50/90, 8/32 µg/mL), and MEM (MIC50/90, 8/32 µg/mL). Table Conclusion CAZ-AVI was the most active agent against AmpC-overproducing P. aeruginosa with higher proportion of clinical cure than controls. CAZ-AVI was also among the most active agents against AmpC-overproducing Enterobacterales, with &gt;96% isolates susceptible. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee) Urania Rappo, MD, MS, PharmD, Allergan (before its acquisition by AbbVie) (Employee)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nozomi Igarashi ◽  
Megumi Honjo ◽  
Makoto Aihara

AbstractWe examined the effects of mTOR inhibitors on the fibrotic response induced by transforming growth factor-beta2 (TGF-β2) in cultured human trabecular meshwork (hTM) cells. TGF-β2-induced expression of fibronectin, collagen type I, alpha 1 chain (COL1A1), and alpha-smooth muscle actin (αSMA) in hTM cells was examined in the presence or absence of mTOR inhibitors using quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. The migration rates of hTM cells were examined in the presence of TGF-β2 with or without mTOR inhibitors. An in vitro study showed that the expression of fibronectin, COL1A1, and αSMA was upregulated by TGF-β2 treatment of hTM cells; such upregulation was significantly suppressed by mTOR inhibitors. The inhibitors significantly reduced the migration rate of TGF-β2-stimulated hTM cells. mTOR inhibitors may usefully reduce the fibrotic response of hTM cells and we may have to explore if it is also effective in in vivo model.


Sign in / Sign up

Export Citation Format

Share Document