scholarly journals Extent of Inflammation and Foreign Body Reaction to Porous Polyethylene In Vitro and In Vivo

In Vivo ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 337-347 ◽  
Author(s):  
TOBIAS VOLLKOMMER ◽  
ANDERS HENNINGSEN ◽  
REINHARD E. FRIEDRICH ◽  
OLIVER HEINRICH FELTHAUS ◽  
FABIAN EDER ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiaxi Chen ◽  
Huiqun Zhou ◽  
Daping Xie ◽  
Yiming Niu

Abstract Background Implantation of a biomaterial may induce the foreign-body reaction to the host tissue that determines the outcome of the integration and the biological performance of the implants. The foreign-body reaction can be modulated by control of the material properties of the implants. Methods First, we synthesized methacrylated Bletilla striata Polysaccharide (BSP-MA) and constructed a series of open porous cryogels utilizing this material via the freezing-thawing treatment of solvent-precursors systems. Second, Pore size and modulus were measured to characterize the properties of BSP cryogels. Live/dead staining of cells and CCK-8 were performed to test the cytocompatibility of the scaffolds. In addition, the Real-Time qPCR experiments were carried for the tests. Finally, the BSP scaffolds were implanted subcutaneously to verify the foreign-body reaction between host tissue and materials. Results Our data demonstrated that cryogels with different pore sizes and modulus can be fabricated by just adjusting the concentration. Besides, the cryogels showed well cytocompatibility in the in vitro experiments and exhibited upregulated expression levels of pro-inflammation-related genes (Tnfa and Il1b) with the increase of pore size. In vivo experiments further proved that with the increase of pore size, more immune cells infiltrated into the inner zone of materials. The foreign-body reaction and the distribution of immune-regulatory cells could be modulated by tuning the material microstructure. Conclusions Collectively, our findings revealed Bletilla striata polysaccharide cryogel scaffold with different pore sizes can spatially control foreign-body reaction. The microstructure of cryogels could differentially guide the distribution of inflammatory cells, affect the formation of blood vessels and fibrous capsules, which eventually influence the material-tissue integration. This work demonstrates a practical strategy to regulate foreign body reaction and promote the performance of medical devices.


2021 ◽  
Author(s):  
Jiaxi Chen ◽  
Huiqun Zhou ◽  
Daping Xie ◽  
Yiming Niu

Abstract BackgroundImplantation of a biomaterial may induce the foreign-body reaction to the host tissue that determines the outcome of the integration and the biological performance of the implant. The level of foreign-body reaction can be modulated by material properties.MethodsFirst, we synthesized methacrylated Bletilla striata Polysaccharide (BSP-MA) and constructed a series of open porous cryogels utilizing this material via the freezing-thawing treatment of solvent-precursors systems. Second, Pore size and rheology were measured to characterize the material properties of cryogels. Live/dead staining of cells and CCK-8 was performed to test the cytocompatibility of the scaffolds. In addition, the Real-Time qPCR experiments were carried for in vitro tests. Finally, the BSP scaffolds were implanted subcutaneously to verify the foreign-body reaction between host tissue and materials.ResultsOur data demonstrated that cryogels with different pore sizes and modulus can be fabricated by just adjusting the concentration. Besides, the cryogels show well cytocompatibility in the in vitro experiments and exhibited upregulated expression levels of pro-inflammation-related genes (Tnfa and Il1b) with the increase of pore size. In vivo experiments further proved that with the increase of pore size, more immune cells infiltrated into the inner zone of materials. The foreign-body reaction and the distribution of immune-regulatory cells could be modulated by tuning the material microstructure.ConclusionsCollectively, our findings revealed Bletilla striata polysaccharide cryogel scaffold with different pore sizes can spatially control foreign-body reaction. The microstructure of cryogels could differentially guide the distribution of inflammatory cells, affect the formation of blood vessels and fibrous capsules, which eventually influence the material-tissue integration. This work demonstrates a practical strategy to regulate foreign body response and promote the performance of medical devices.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 275
Author(s):  
Shan Yasin Mian ◽  
Jonathan Roy Honey ◽  
Alejandro Carnicer-Lombarte ◽  
Damiano Giuseppe Barone

Brain–computer interfaces (BCI) are reliant on the interface between electrodes and neurons to function. The foreign body reaction (FBR) that occurs in response to electrodes in the brain alters this interface and may pollute detected signals, ultimately impeding BCI function. The size of the FBR is influenced by several key factors explored in this review; namely, (a) the size of the animal tested, (b) anatomical location of the BCI, (c) the electrode morphology and coating, (d) the mechanics of electrode insertion, and (e) pharmacological modification (e.g., drug eluting electrodes). Trialing methods to reduce FBR in vivo, particularly in large models, is important to enable further translation in humans, and we systematically reviewed the literature to this effect. The OVID, MEDLINE, EMBASE, SCOPUS and Scholar databases were searched. Compiled results were analysed qualitatively. Out of 8388 yielded articles, 13 were included for analysis, with most excluded studies experimenting on murine models. Cats, rabbits, and a variety of breeds of minipig/marmoset were trialed. On average, over 30% reduction in inflammatory cells of FBR on post mortem histology was noted across intervention groups. Similar strategies to those used in rodent models, including tip modification and flexible and sinusoidal electrode configurations, all produced good effects in histology; however, a notable absence of trials examining the effect on BCI end-function was noted. Future studies should assess whether the reduction in FBR correlates to an improvement in the functional effect of the intended BCI.


2007 ◽  
Vol 330-332 ◽  
pp. 193-196
Author(s):  
Duck Hyun Kim ◽  
Kang Sik Lee ◽  
Jung Hwa Kim ◽  
Jae Suk Chang ◽  
Yung Tae Kim

We observed the cytotoxicity of human bone marrow stromal cells(hBMSCs) by microparticles of bioactive glass with four particle groups(same chemical composition-45S5 but produced by two different manufacturer and two different size groups). In vivo test using rat calvaria were also carried out. The apoptosis rates of all small particle groups(10-20 ㎛) were increased than large(500-700 ㎛ or 200-900 ㎛) particle groups in any culture time and any amount of particles with statistical significance. In vivo study we observed pathologic signs such as macrophages and foreign-body giant cells in rat calvaria by micro-particles of bioglass. Small(10- 20 ㎛) sized particles induced foreign body reaction and bone resorption. There was proliferation of macrophages and cells in large number. But in large particle groups, only fibroblasts were surrounding the particles. The micro-particles of bioglass induced apoptosis of hBMSC and foreign body reaction in calvaria of rat, therefore micro-particles of bioglass may cause osteolysis if used in replacement arthroplasty.


2015 ◽  
Vol 1112 ◽  
pp. 449-452 ◽  
Author(s):  
Deni Noviana ◽  
Sri Estuningsih ◽  
Devi Paramitha ◽  
Mokhammad Fakhrul Ulum ◽  
Hendra Hermawan

A foreign body is any object originating outside the body. It may migrate from its entry site and cause pain, inflammation and infection. This study aims to examine in vitro cytotoxicity and in vivo tissue response at different implantation sites of two iron-based foreign body (FeFB) specimens: pure Fe wire, Cr-coated Fe wire, and SS316L wire as control. In vitro cytotoxicity was assessed towards rat smooth muscle cells with direct method of methyl thiazolyl tetrazolium (MTT) assay. In vivo tissue response was examined using mice animal model until day 14 after surgical implantation in subcutaneous nape area and intramuscular right femoral muscle. Cell viability, surface morphology and Fe ion release were examined. Implant density and tissue response were examined by using radiographic imaging and histology, respectively. Results showed that both FeFB specimens exhibited similar cell viability with SS316L. Iron ion concentration was higher in both FeFB medium compared to that of SS316L and with oxide layer formation on their surface. Radiographic analysis showed that the density of both FeFB implants end-side was increased. Meanwhile, histological tissue response at intramuscular sites for FeFB specimens showed a prominent inflammatory response compared to SS316L. Detailed analysis on cell and tissue-material interactions of the iron-based foreign body specimens is discussed further in this article.


2008 ◽  
Vol 52 (10) ◽  
pp. 3681-3686 ◽  
Author(s):  
O. Murillo ◽  
M. E. Pachón ◽  
G. Euba ◽  
R. Verdaguer ◽  
F. Tubau ◽  
...  

ABSTRACT Since levofloxacin at high doses was more active than levofloxacin at conventional doses and was the best therapy alone in a rat model of staphylococcal foreign-body infection, in this study we tested how these differences affect the activities of their respective combinations with rifampin in vitro and in vivo. In vitro studies were performed in the log and stationary phases. By using this model, rifampin at 25 mg/kg of body weight/12 h, levofloxacin at 100 mg/kg/day, levofloxacin at 100 mg/kg/day plus rifampin, levofloxacin at 50 mg/kg/day, levofloxacin at 50 mg/kg/day plus rifampin, or a control treatment was administered for 7 days; and therapy with for levofloxacin at 100 mg/kg/day alone and rifampin alone was prolonged to 14 days. We screened for the appearance of resistant strains. Killing curves in the log phase showed a clear antagonism with levofloxacin at concentrations ≥2× MIC and rifampin and tended to occur in the stationary phase. At the end of 7 days of therapy, levofloxacin at 100 mg/kg/day was the best treatment and decreased the bacterial counts from tissue cage fluid (P < 0.05 compared with the results for groups except those receiving rifampin alone). At the end of 14 days of therapy with levofloxacin at 100 mg/kg/day, levofloxacin at 100 mg/kg/day plus rifampin, and the control treatment, the bacterial counts on the coverslips were 2.24 (P < 0.05 compared with the results with the combined therapy), 3.36, and 5.4 log CFU/ml, respectively. No rifampin or levofloxacin resistance was detected in any group except that receiving rifampin alone. In conclusion, high-dose levofloxacin was the best treatment and no resistant strains appeared; the addition of rifampin showed an antagonistic effect. The efficacy of the rifampin-levofloxacin combination is not significantly improved by the dosage of levofloxacin.


Sign in / Sign up

Export Citation Format

Share Document