scholarly journals Novel Orthogonally Hydrocarbon-Modified Cell-Penetrating Peptide Nanoparticles Mediate Efficient Delivery of Splice-Switching Antisense Oligonucleotides In Vitro and In Vivo

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1046
Author(s):  
Safa Bazaz ◽  
Tõnis Lehto ◽  
Rahel Tops ◽  
Olof Gissberg ◽  
Dhanu Gupta ◽  
...  

Splice-switching therapy with splice-switching oligonucleotides (SSOs) has recently proven to be a clinically applicable strategy for the treatment of several mis-splice disorders. Despite this, wider application of SSOs is severely limited by the inherently poor bioavailability of SSO-based therapeutic compounds. Cell-penetrating peptides (CPPs) are a class of drug delivery systems (DDSs) that have recently gained considerable attention for improving the uptake of various oligonucleotide (ON)-based compounds, including SSOs. One strategy that has been successfully applied to develop effective CPP vectors is the introduction of various lipid modifications into the peptide. Here, we repurpose hydrocarbon-modified amino acids used in peptide stapling for the orthogonal introduction of hydrophobic modifications into the CPP structure during peptide synthesis. Our data show that α,α-disubstituted alkenyl-alanines can be successfully utilized to introduce hydrophobic modifications into CPPs to improve their ability to formulate SSOs into nanoparticles (NPs), and to mediate high delivery efficacy and tolerability both in vitro and in vivo. Conclusively, our results offer a new flexible approach for the sequence-specific introduction of hydrophobicity into the structure of CPPs and for improving their delivery properties.

RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24084-24093 ◽  
Author(s):  
Qi Zhang ◽  
Jing Wang ◽  
Hao Zhang ◽  
Dan Liu ◽  
Linlin Ming ◽  
...  

Hydrophobic cell penetrating peptide PFVYLI-modified liposomes have been developed for the targeted delivery of PTX into tumors.


Author(s):  
Evgeniya Trofimenko ◽  
Gianvito Grasso ◽  
Mathieu Heulot ◽  
Nadja Chevalier ◽  
Marco A. Deriu ◽  
...  

SummaryCell-penetrating peptides (CPPs) allow intracellular delivery of cargo molecules. CPPs provide efficient methodology to transfer bioactive molecules in cells, in particular in conditions when transcription or translation of cargo-encoding sequences is not desirable or achievable. The mechanisms allowing CPPs to enter cells are ill-defined and controversial. This work identifies potassium channels as key regulators of cationic CPP translocation. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 positively modulate CPP cellular direct translocation by reducing transmembrane potential (Vm). Cationic CPPs further decrease the Vm to megapolarization values (about −150 mV) leading to the formation of ∼2 nm-wide water pores used by CPPs to access the cell’s cytoplasm. Pharmacological manipulation to lower transmembrane potential boosted CPPs cellular uptake in zebrafish and mouse models. Besides identifying the first genes that regulate CPP translocation, this work characterizes key mechanistic steps used by CPPs to cross cellular membrane. This opens the ground for pharmacological strategies augmenting the susceptibility of cells to capture CPP-linked cargos in vitro and in vivo.


2020 ◽  
Vol 21 (5) ◽  
pp. 1856
Author(s):  
Qi Shuai ◽  
Yue Cai ◽  
Guangkuo Zhao ◽  
Xuanrong Sun

On account of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, amphiphilic block copolymer-based micelles have been widely utilized for chemotherapy drug delivery. In order to further improve the antitumor ability and to also reduce undesired side effects of drugs, cell-penetrating peptides have been used to functionalize the surface of polymer micelles endowed with the ability to target tumor tissues. Herein, we first synthesized functional polyethylene glycol-polylactic acid (PEG-PLA) tethered with maleimide at the PEG section of the block polymer, which was further conjugated with a specific peptide, the transactivating transcriptional activator (TAT), with an approved capacity of aiding translocation across the plasma membrane. Then, TAT-conjugated, paclitaxel-loaded nanoparticles were self-assembled into stable nanoparticles with a favorable size of 20 nm, and displayed a significantly increased cytotoxicity, due to their enhanced accumulation via peptide-mediated cellular association in human breast cancer cells (MCF-7) in vitro. But when further used in vivo, TAT-NP-PTX showed an acceleration of the drug’s plasma clearance rate compared with NP-PTX, and therefore weakened its antitumor activities in the mice model, because of its positive charge, its elimination by the endoplasmic reticulum system more quickly, and its targeting effect on normal cells leading towards being more toxic. So further modification of TAT-NP-PTX to shield TAT peptide’s positive charges may be a hot topic to overcome the present dilemma.


2020 ◽  
Vol 19 ◽  
pp. 1357-1367 ◽  
Author(s):  
Liu Yang ◽  
Feihe Ma ◽  
Fang Liu ◽  
Jinjin Chen ◽  
Xuewei Zhao ◽  
...  

Peptides ◽  
2017 ◽  
Vol 87 ◽  
pp. 50-63 ◽  
Author(s):  
Azam Bolhassani ◽  
Behnaz Sadat Jafarzade ◽  
Golnaz Mardani

2007 ◽  
Vol 35 (4) ◽  
pp. 770-774 ◽  
Author(s):  
P. Järver ◽  
K. Langel ◽  
S. El-Andaloussi ◽  
Ü. Langel

CPPs (cell-penetrating peptides) can be defined as short peptides that are able to efficiently penetrate cellular lipid bilayers. Because of this remarkable feature, they are excellent candidates regarding alterations in gene expression. CPPs have been utilized in in vivo and in vitro experiments as delivery vectors for different bioactive cargoes. This review focuses on the experiments performed in recent years where CPPs have been used as vectors for multiple effectors of gene expression such as oligonucleotides for antisense, siRNA (small interfering RNA) and decoy dsDNA (double-stranded DNA) applications, and as transfection agents for plasmid delivery.


Sign in / Sign up

Export Citation Format

Share Document