scholarly journals High Performance of a Metal Layer-Assisted Guided-Mode Resonance Biosensor Modulated by Double-Grating

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 221
Author(s):  
Chengrui Zhang ◽  
Yi Zhou ◽  
Lan Mi ◽  
Jiong Ma ◽  
Xiang Wu ◽  
...  

Guided-mode resonance (GMR) sensors are widely used as biosensors with the advantages of simple structure, easy detection schemes, high efficiency, and narrow linewidth. However, their applications are limited by their relatively low sensitivity (<200 nm/RIU) and in turn low figure of merit (FOM, <100 1/RIU). Many efforts have been made to enhance the sensitivity or FOM, separately. To enhance the sensitivity and FOM simultaneously for more sensitive sensing, we proposed a metal layer-assisted double-grating (MADG) structure with the evanescent field extending to the sensing region enabled by the metal reflector layer underneath the double-grating. The influence of structural parameters was systematically investigated. Bulk sensitivity of 550.0 nm/RIU and FOM of 1571.4 1/RIU were obtained after numerical optimization. Compared with a single-grating structure, the surface sensitivity of the double-grating structure for protein adsorption increases by a factor of 2.4 times. The as-proposed MADG has a great potential to be a biosensor with high sensitivity and high accuracy.

2012 ◽  
Vol 20 (13) ◽  
pp. 14584 ◽  
Author(s):  
Sheng-Fu Lin ◽  
Chih-Ming Wang ◽  
Ting-Jou Ding ◽  
Ya-Lun Tsai ◽  
Tsung-Hsun Yang ◽  
...  

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 126 ◽  
Author(s):  
Mohammad G. Abdallah ◽  
Joseph A. Buchanan-Vega ◽  
Kyu J. Lee ◽  
Brett R. Wenner ◽  
Jeffery W. Allen ◽  
...  

Assessing levels of neuropeptide Y (NPY) in the human body has many medical uses. Accordingly, we report the quantitative detection of NPY biomarkers applying guided-mode resonance (GMR) biosensor methodology. The label-free sensor operates in the near-infrared spectral region exhibiting distinctive resonance signatures. The interaction of NPY with bioselective molecules on the sensor surface causes spectral shifts that directly identify the binding event without additional processing. In the experiments described here, NPY antibodies are attached to the sensor surface to impart specificity during operation. For the low concentrations of NPY of interest, we apply a sandwich NPY assay in which the sensor-linked anti-NPY molecule binds with NPY that subsequently binds with anti-NPY to close the sandwich. The sandwich assay achieves a detection limit of ~0.1 pM NPY. The photonic sensor methodology applied here enables expeditious high-throughput data acquisition with high sensitivity and specificity. The entire bioreaction is recorded as a function of time, in contrast to label-based methods with single-point detection. The convenient methodology and results reported are significant, as the NPY detection range of 0.1–10 pM demonstrated is useful in important medical circumstances.


2016 ◽  
Vol 226 ◽  
pp. 204-210 ◽  
Author(s):  
Víctor Canalejas-Tejero ◽  
Ana López ◽  
Rafael Casquel ◽  
Miguel Holgado ◽  
Carlos Angulo Barrios

2006 ◽  
Vol 18 (03) ◽  
pp. 128-137 ◽  
Author(s):  
BOR-SHING LIN ◽  
BOR-SHYH LIN ◽  
HUEY-DONG WU ◽  
FOK-CHING CHONG ◽  
SAO-JIE CHEN

This paper describes the design of a low-cost and high performance wheeze recognition system. First, respiratory sounds are captured, amplified and filtered by an analog circuit; then digitized through a PC soundcard, and recorded in accordance with the Computerized Respiratory Sound Analysis (CORSA) standards. Since the proposed wheeze detection algorithm is based on the spectrogram processing of respiratory sounds, spectrograms generated from recorded sounds have to pass through a 2D bilateral filter for edge-preserving smoothing. Finally, the processed spectra go through an edge detection procedure to recognize wheeze sounds.Experiment results show a high sensitivity of 0.967 and a specificity of 0.909 in qualitative analysis of wheeze recognition. Due to its high efficiency, great performance and easy-to-implement features, this wheeze recognition system could be of interest in the clinical monitoring of asthma patients and the study of physiological mechanisms in the respiratory airways.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2872 ◽  
Author(s):  
Eunhan Lee ◽  
Taewi Kim ◽  
Heeseong Suh ◽  
Minho Kim ◽  
Peter Pikhitsa ◽  
...  

Among many attempts to make a decent human motion detector in various engineering fields, a mechanical crack-based sensor that deliberately generates and uses nano-scale cracks on a metal deposited thin film is gaining attention for its high sensitivity. While the metal layer of the sensor must be responsible for its high performance, its effects have not received much academic interest. In this paper, we studied the relationship between the thickness of the metal layer and the characteristics of the sensor by depositing a few nanometers of chromium (Cr) and gold (Au) on the PET film. We found that the sensitivity of the crack sensor improves/increases under the following conditions: (1) when Au is thin and Cr is thick; and (2) when the ratio of Au is lower than that of Cr, which also increases the transmittance of the sensor, along with its sensitivity. As we only need a small amount of Au to achieve high sensitivity of the sensor, we have suggested more efficient and economical fabrication methods. With this crack-based sensor, we were able to successfully detect finger motions and to distinguish various signs of American Sign Language (ASL).


Sign in / Sign up

Export Citation Format

Share Document