scholarly journals Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 501
Author(s):  
Ieva Plikusienė ◽  
Ernesta Bužavaitė-Vertelienė ◽  
Vincentas Mačiulis ◽  
Audrius Valavičius ◽  
Almira Ramanavičienė ◽  
...  

Low-cost 1D plasmonic photonic structures supporting Tamm plasmon polaritons and cavity modes were employed for optical signal enhancement, modifying the commercially available quartz crystal microbalance with dissipation (QCM-D) sensor chip in a combinatorial spectroscopic ellipsometry and quartz microbalance method. The Tamm plasmon optical state and cavity mode (CM) for the modified mQCM-D sample obtained sensitivity of ellipsometric parameters to RIU of ΨTPP = 126.78 RIU−1 and ΔTPP = 325 RIU−1, and ΨCM = 264 RIU−1 and ΔCM = 645 RIU‑1, respectively. This study shows that Tamm plasmon and cavity modes exhibit about 23 and 49 times better performance of ellipsometric parameters, respectively, for refractive index sensing than standard spectroscopic ellipsometry on a QCM-D sensor chip. It should be noted that for the optical biosensing signal readout, the sensitivity of Tamm plasmon polaritons and cavity modes are comparable with and higher than the standard QCM-D sensor chip. The different origin of Tamm plasmon polaritons (TPP) and cavity mode (CM) provides further advances and can determine whether the surface (TPP) or bulk process (CM) is dominating. The dispersion relation feature of TPP, namely the direct excitation without an additional coupler, allows the possibility to enhance the optical signal on the sensing surface. To the best of our knowledge, this is the first study and application of the TPP and CM in the combinatorial SE-QCM-D method for the enhanced readout of ellipsometric parameters.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4166
Author(s):  
Román Fernández ◽  
María Calero ◽  
Yolanda Jiménez ◽  
Antonio Arnau

Monolithic quartz crystal microbalance (MQCM) has recently emerged as a very promising technology suitable for biosensing applications. These devices consist of an array of miniaturized QCM sensors integrated within the same quartz substrate capable of detecting multiple target analytes simultaneously. Their relevant benefits include high throughput, low cost per sensor unit, low sample/reagent consumption and fast sensing response. Despite the great potential of MQCM, unwanted environmental factors (e.g., temperature, humidity, vibrations, or pressure) and perturbations intrinsic to the sensor setup (e.g., mechanical stress exerted by the measurement cell or electronic noise of the characterization system) can affect sensor stability, masking the signal of interest and degrading the limit of detection (LoD). Here, we present a method based on the discrete wavelet transform (DWT) to improve the stability of the resonance frequency and dissipation signals in real time. The method takes advantage of the similarity among the noise patterns of the resonators integrated in an MQCM device to mitigate disturbing factors that impact on sensor response. Performance of the method is validated by studying the adsorption of proteins (neutravidin and biotinylated albumin) under external controlled factors (temperature and pressure/flow rate) that simulate unwanted disturbances.


2021 ◽  
pp. 2151020
Author(s):  
Dong In Kim ◽  
Rak Hyun Jeong ◽  
Ji Won Lee ◽  
Seong Park ◽  
Jin-Hyo Boo

ZnO is known as a promising material for surface acoustic wave (SAW) sensor devices because of its piezoelectric property. Recently, quartz crystal microbalances (QCMs) have been promising as a sensor platform due to their high sensitivity and ease of measurement. In particular, the alignment of ZnO nanosheets (NSs) into ordered nanoarrays is expected to improve the device sensitivity and stability due to large specific surface area, which allows the captured significant quantities of gas molecules. In this study, we fabricated a quartz crystal microbalance sensor with ZnO NSs structures using polyvinylidene fluoride as a receptor for nerve agent detection. We synthesized two-dimensional NSs by chemical bath deposition (CBD) via the potassium hydroxide etching method. CBD is an excellent method that can easily form uniform structures at low cost. We fabricated ZnO NSs modified with polyvinylidene fluoride and used it for detection of dimethyl methylphosphonate (DMMP) gas. The NSs structure indicated that, when a similar functional group material is coated, the specific surface area increased compared to the nanorods (NRs) structure. As a result, the sensitivity of the quartz crystal microbalance sensor to DMMP gas was improved.


Sign in / Sign up

Export Citation Format

Share Document