scholarly journals A Translational Study on Acute Traumatic Brain Injury: High Incidence of Epileptiform Activity on Human and Rat Electrocorticograms and Histological Correlates in Rats

2020 ◽  
Vol 10 (9) ◽  
pp. 570
Author(s):  
Ilia G. Komoltsev ◽  
Mikhail V. Sinkin ◽  
Aleksandra A. Volkova ◽  
Elizaveta A. Smirnova ◽  
Margarita R. Novikova ◽  
...  

Background: In humans, early pathological activity on invasive electrocorticograms (ECoGs) and its putative association with pathomorphology in the early period of traumatic brain injury (TBI) remains obscure. Methods: We assessed pathological activity on scalp electroencephalograms (EEGs) and ECoGs in patients with acute TBI, early electrophysiological changes after lateral fluid percussion brain injury (FPI), and electrophysiological correlates of hippocampal damage (microgliosis and neuronal loss), a week after TBI in rats. Results: Epileptiform activity on ECoGs was evident in 86% of patients during the acute period of TBI, ECoGs being more sensitive to epileptiform and periodic discharges. A “brush-like” ECoG pattern superimposed over rhythmic delta activity and periodic discharge was described for the first time in acute TBI. In rats, FPI increased high-amplitude spike incidence in the neocortex and, most expressed, in the ipsilateral hippocampus, induced hippocampal microgliosis and neuronal loss, ipsilateral dentate gyrus being most vulnerable, a week after TBI. Epileptiform spike incidence correlated with microglial cell density and neuronal loss in the ipsilateral hippocampus. Conclusion: Epileptiform activity is frequent in the acute period of TBI period and is associated with distant hippocampal damage on a microscopic level. This damage is probably involved in late consequences of TBI. The FPI model is suitable for exploring pathogenetic mechanisms of post-traumatic disorders.

1998 ◽  
Vol 57 (5) ◽  
pp. 475
Author(s):  
J. E. Galvin ◽  
V. M. -Y. Lee ◽  
M. Nakamura ◽  
K. E. Saatman ◽  
R. Raghupathi ◽  
...  

2014 ◽  
Vol 9 (3) ◽  
pp. 916-922 ◽  
Author(s):  
BO QIU ◽  
XINGUO LI ◽  
XIYANG SUN ◽  
YONG WANG ◽  
ZHITAO JING ◽  
...  

Neurosurgery ◽  
2014 ◽  
Vol 76 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Muhammad Omar Chohan ◽  
Olga Bragina ◽  
Syed Faraz Kazim ◽  
Gloria Statom ◽  
Narjes Baazaoui ◽  
...  

ABSTRACT BACKGROUND: Traumatic brain injury (TBI) is a risk factor for Alzheimer disease (AD), a neurocognitive disorder with similar cellular abnormalities. We recently discovered a small molecule (Peptide 6) corresponding to an active region of human ciliary neurotrophic factor, with neurogenic and neurotrophic properties in mouse models of AD and Down syndrome. OBJECTIVE: To describe hippocampal abnormalities in a mouse model of mild to moderate TBI and their reversal by Peptide 6. METHODS: TBI was induced in adult C57Bl6 mice using controlled cortical impact with 1.5 mm of cortical penetration. The animals were treated with 50 nmol/d of Peptide 6 or saline solution for 30 days. Dentate gyrus neurogenesis, dendritic and synaptic density, and AD biomarkers were quantitatively analyzed, and behavioral tests were performed. RESULTS: Ipsilateral neuronal loss in CA1 and the parietal cortex and increase in Alzheimer-type hyperphosphorylated tau and A-β were seen in TBI mice. Compared with saline solution, Peptide 6 treatment increased the number of newborn neurons, but not uncommitted progenitor cells, in dentate gyrus by 80%. Peptide 6 treatment also reversed TBI-induced dendritic and synaptic density loss while increasing activity in tri-synaptic hippocampal circuitry, ultimately leading to improvement in memory recall on behavioral testing. CONCLUSION: Long-term treatment with Peptide 6 enhances the pool of newborn neurons in the dentate gyrus, prevents neuronal loss in CA1 and parietal cortex, preserves the dendritic and synaptic architecture in the hippocampus, and improves performance on a hippocampus-dependent memory task in TBI mice. These findings necessitate further inquiry into the therapeutic potential of small molecules based on neurotrophic factors.


2019 ◽  
Vol 30 (8) ◽  
pp. 839-855 ◽  
Author(s):  
Mahasweta Das ◽  
Karthick Mayilsamy ◽  
Shyam S. Mohapatra ◽  
Subhra Mohapatra

Abstract Traumatic brain injury (TBI) is a major cause of injury-related mortality and morbidity in the USA and around the world. The survivors may suffer from cognitive and memory deficits, vision and hearing loss, movement disorders, and different psychological problems. The primary insult causes neuronal damage and activates astrocytes and microglia which evokes immune responses causing further damage to the brain. Clinical trials of drugs to recover the neuronal loss are not very successful. Regenerative approaches for TBI using mesenchymal stem cells (MSCs) seem promising. Results of preclinical research have shown that transplantation of MSCs reduced secondary neurodegeneration and neuroinflammation, promoted neurogenesis and angiogenesis, and improved functional outcome in the experimental animals. The functional improvement is not necessarily related to cell engraftment; rather, immunomodulation by molecular factors secreted by MSCs is responsible for the beneficial effects of this therapy. However, MSC therapy has a few drawbacks including tumor formation, which can be avoided by the use of MSC-derived exosomes. This review has focused on the research works published in the field of regenerative therapy using MSCs after TBI and its future direction.


2020 ◽  
pp. 1-12
Author(s):  
Cindy Santiago-Castañeda ◽  
Marysol Segovia-Oropeza ◽  
Luis Concha ◽  
Sandra Adela Orozco-Suárez ◽  
Luisa Rocha

Background: Severe traumatic brain injury (TBI), an important risk factor for Alzheimer’s disease, induces long-term hippocampal damage and hyperexcitability. On the other hand, studies support that propylparaben (PPB) induces hippocampal neuroprotection in neurodegenerative diseases. Objective: Experiments were designed to evaluate the effects of subchronic treatment with PPB on TBI-induced changes in the hippocampus of rats. Methods: Severe TBI was induced using the lateral fluid percussion model. Subsequently, rats received subchronic administration with PPB (178 mg/kg, TBI+PPB) or vehicle (TBI+PEG) daily for 5 days. The following changes were examined during the experimental procedure: sensorimotor dysfunction, changes in hippocampal excitability, as well as neuronal damage and volume. Results: TBI+PEG group showed sensorimotor dysfunction (p <  0.001), hyperexcitability (64.2%, p <  0.001), and low neuronal preservation ipsi- and contralateral to the trauma. Magnetic resonance imaging (MRI) analysis revealed lower volume (17.2%; p <  0.01) and great damage to the ipsilateral hippocampus. TBI+PPB group showed sensorimotor dysfunction that was partially reversed 30 days after trauma. This group showed hippocampal excitability and neuronal preservation similar to the control group. However, MRI analysis revealed lower hippocampal volume (p <  0.05) when compared with the control group. Conclusion: The present study confirms that post-TBI subchronic administration with PPB reduces the long-term consequences of trauma in the hippocampus. Implications of PPB as a neuroprotective strategy to prevent the development of Alzheimer’s disease as consequence of TBI are discussed.


2016 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing-Ya Wang ◽  
Ya-Ni Huang ◽  
Chong-Chi Chiu ◽  
David Tweedie ◽  
Weiming Luo ◽  
...  

Critical Care ◽  
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Rita Campos-Pires ◽  
Haldis Onggradito ◽  
Eszter Ujvari ◽  
Shughoofa Karimi ◽  
Flavia Valeo ◽  
...  

Abstract Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, but there are no clinically proven treatments that specifically target neuronal loss and secondary injury development following TBI. In this study, we evaluate the effect of xenon treatment on functional outcome, lesion volume, neuronal loss and neuroinflammation after severe TBI in rats. Methods Young adult male Sprague Dawley rats were subjected to controlled cortical impact (CCI) brain trauma or sham surgery followed by treatment with either 50% xenon:25% oxygen balance nitrogen, or control gas 75% nitrogen:25% oxygen. Locomotor function was assessed using Catwalk-XT automated gait analysis at baseline and 24 h after injury. Histological outcomes were assessed following perfusion fixation at 15 min or 24 h after injury or sham procedure. Results Xenon treatment reduced lesion volume, reduced early locomotor deficits, and attenuated neuronal loss in clinically relevant cortical and subcortical areas. Xenon treatment resulted in significant increases in Iba1-positive microglia and GFAP-positive reactive astrocytes that was associated with neuronal preservation. Conclusions Our findings demonstrate that xenon improves functional outcome and reduces neuronal loss after brain trauma in rats. Neuronal preservation was associated with a xenon-induced enhancement of microglial cell numbers and astrocyte activation, consistent with a role for early beneficial neuroinflammation in xenon’s neuroprotective effect. These findings suggest that xenon may be a first-line clinical treatment for brain trauma.


Sign in / Sign up

Export Citation Format

Share Document