Propylparaben Reduces the Long-Term Consequences in Hippocampus Induced by Traumatic Brain Injury in Rats: Its Implications as Therapeutic Strategy to Prevent Neurodegenerative Diseases

2020 ◽  
pp. 1-12
Author(s):  
Cindy Santiago-Castañeda ◽  
Marysol Segovia-Oropeza ◽  
Luis Concha ◽  
Sandra Adela Orozco-Suárez ◽  
Luisa Rocha

Background: Severe traumatic brain injury (TBI), an important risk factor for Alzheimer’s disease, induces long-term hippocampal damage and hyperexcitability. On the other hand, studies support that propylparaben (PPB) induces hippocampal neuroprotection in neurodegenerative diseases. Objective: Experiments were designed to evaluate the effects of subchronic treatment with PPB on TBI-induced changes in the hippocampus of rats. Methods: Severe TBI was induced using the lateral fluid percussion model. Subsequently, rats received subchronic administration with PPB (178 mg/kg, TBI+PPB) or vehicle (TBI+PEG) daily for 5 days. The following changes were examined during the experimental procedure: sensorimotor dysfunction, changes in hippocampal excitability, as well as neuronal damage and volume. Results: TBI+PEG group showed sensorimotor dysfunction (p <  0.001), hyperexcitability (64.2%, p <  0.001), and low neuronal preservation ipsi- and contralateral to the trauma. Magnetic resonance imaging (MRI) analysis revealed lower volume (17.2%; p <  0.01) and great damage to the ipsilateral hippocampus. TBI+PPB group showed sensorimotor dysfunction that was partially reversed 30 days after trauma. This group showed hippocampal excitability and neuronal preservation similar to the control group. However, MRI analysis revealed lower hippocampal volume (p <  0.05) when compared with the control group. Conclusion: The present study confirms that post-TBI subchronic administration with PPB reduces the long-term consequences of trauma in the hippocampus. Implications of PPB as a neuroprotective strategy to prevent the development of Alzheimer’s disease as consequence of TBI are discussed.

2019 ◽  
Vol 72 (1) ◽  
pp. 161-180 ◽  
Author(s):  
Marlena Zyśk ◽  
Fredrik Clausen ◽  
Ximena Aguilar ◽  
Dag Sehlin ◽  
Stina Syvänen ◽  
...  

2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


2010 ◽  
Vol 11 (5) ◽  
pp. 361-370 ◽  
Author(s):  
Victoria E. Johnson ◽  
William Stewart ◽  
Douglas H. Smith

Author(s):  
Mohammad Zamanian ◽  
Małgorzata Kujawska ◽  
Marjan Nikbakht Zadeh ◽  
Amin Hassanshahi ◽  
Soudeh Ramezanpour ◽  
...  

Background & objective: Neurological diseases are becoming a significant problem worldwide, with the elderly at a higher risk of being affected. Several researchers have investigated the neuroprotective effects of Carvacrol (CAR) (5-isopropyl-2-methyl phenol). This review systematically surveys the existing literature on the impact of CAR when used as a neuroprotective agent in neurological diseases. Methods: The systematic review involved English articles published in the last ten years obtained from PubMed, Google Scholar, and Scopus databases. The following descriptors were used to search the literature: “Carvacrol” [Title] AND “neuroprotective (neuroprotection)” [Title] OR “stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, seizure, epilepsy [Title]. Results: : A total of 208 articles were retrieved during the search process, but only 20 studies met the eligibility criteria and were included for review. A total of 20 articles were identified, in which the efficacy of CAR was described in experimental models of stroke, traumatic brain injury, Parkinson’s disease, Alzheimer’s disease, , epilepsy, and seizure, through motor deficits improvements in neurochemical activity, especially antioxidant systems, reducing inflammation, oxidative stress and apoptosis as well as inhibition of TRPC1 and TRPM7. Conclusion : The data presented in this study support the beneficial impact of CAR on behavioural and neurochemical deficits. CAR benefits accrue because of its anti-apoptotic, antioxidant, and anti-inflammatory properties. Therefore, CAR has emerged as an alternative treatment for neurological disorders based on its properties.


2006 ◽  
Vol 14 (7S_Part_20) ◽  
pp. P1083-P1083
Author(s):  
Daniela Lecca ◽  
Miaad Bader ◽  
David Tweedie ◽  
Debomoy K. Lahiri ◽  
Robert E. Becker ◽  
...  

2015 ◽  
Vol 47 (4) ◽  
pp. 985-993 ◽  
Author(s):  
Mario F. Mendez ◽  
Pongsatorn Paholpak ◽  
Andrew Lin ◽  
Jeannie Y. Zhang ◽  
Edmond Teng

2021 ◽  
Author(s):  
Conner Secora ◽  
Anne Vielle ◽  
Athena Ching-Jung Wang ◽  
Patricia Lenhart ◽  
Ernesto Salcedo ◽  
...  

Alzheimer's disease (AD) is a neurodegenerative condition that affects 6.2 million people age 65 and older in the U.S. alone, and is the leading cause of dementia. Moreover, AD can lead to visual impairment, and AD histopathology also manifests in the retina. However, the factors that modulate AD pathophysiology and lead to varied susceptibility and presentation in the population are not well understood. In this context, traumatic brain injury (TBI), which can arise from sport concussions, military combat, and other causes, is associated with a 2.3-fold higher risk of developing AD and AD-related dementias (ADRD). Thus, we set out to evaluate the effects of TBI, AD, and their combination, on retinal histopathology. Several animal models have been developed to investigate the mechanisms underlying AD, but many have been limited by imperfect recapitulation of human pathology, and no model of TBI-associated AD (AD-TBI) has been characterized. To address this gap, we generated an innovative model of AD-TBI by taking advantage of a transgenic rat model (Tg-F344-AD) shown to recapitulate the main features of human AD pathology, and combining it with a two-time unilateral controlled cortical impact paradigm to mimic repetitive mild TBI (rmTBI). Histopathological analyses at four months post-impact confirm the presence of AD markers in transgenic retinas, and an increased severity of AD pathology due to TBI. Together, these results contribute to our understanding of the effects of TBI on AD retinopathy, with implications for patient care and therapeutic development.


Sign in / Sign up

Export Citation Format

Share Document