scholarly journals An Optimal Transport Based Transferable System for Detection of Erroneous Somato-Sensory Feedback from Neural Signals

2021 ◽  
Vol 11 (11) ◽  
pp. 1393
Author(s):  
Saugat Bhattacharyya ◽  
Mitsuhiro Hayashibe

 This study is aimed at the detection of single-trial feedback, perceived as erroneous by the user, using a transferable classification system while conducting a motor imagery brain–computer interfacing (BCI) task. The feedback received by the users are relayed from a functional electrical stimulation (FES) device and hence are somato-sensory in nature. The BCI system designed for this study activates an electrical stimulator placed on the left hand, right hand, left foot, and right foot of the user. Trials containing erroneous feedback can be detected from the neural signals in form of the error related potential (ErrP). The inclusion of neuro-feedback during the experiments indicated the possibility that ErrP signals can be evoked when the participant perceives an error from the feedback. Hence, to detect such feedback using ErrP, a transferable (offline) decoder based on optimal transport theory is introduced herein. The offline system detects single-trial erroneous trials from the feedback period of an online neuro-feedback BCI system. The results of the FES-based feedback BCI system were compared to a similar visual-based (VIS) feedback system. Using our framework, the error detector systems for both the FES and VIS feedback paradigms achieved an F1-score of 92.66% and 83.10%, respectively, and are significantly superior to a comparative system where an optimal transport was not used. It is expected that this form of transferable and automated error detection system compounded with a motor imagery system will augment the performance of a BCI and provide a better BCI-based neuro-rehabilitation protocol that has an error control mechanism embedded into it. 

2018 ◽  
Vol 7 (3.12) ◽  
pp. 165
Author(s):  
Ghouse Ahamed Z ◽  
Anuj Jain

This paper is give us a overview of Error control method used in image or video transmission. Data in transmission is lost due to link failure or due to congestion and loss in packets, so the aim of this method is to protect data from these errors. Error detection coding and Error correction coding are two types of error control mechanism. Some of the error control mechanisms are Retransmission, Forward error correction, error concealment and error resilience. We are discussing a summary of three methods and Error Concealment in details.  


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1861
Author(s):  
Daniela Calvetti ◽  
Alexander P. Hoover ◽  
Johnie Rose ◽  
Erkki Somersalo

Understanding the dynamics of the spread of COVID-19 between connected communities is fundamental in planning appropriate mitigation measures. To that end, we propose and analyze a novel metapopulation network model, particularly suitable for modeling commuter traffic patterns, that takes into account the connectivity between a heterogeneous set of communities, each with its own infection dynamics. In the novel metapopulation model that we propose here, transport schemes developed in optimal transport theory provide an efficient and easily implementable way of describing the temporary population redistribution due to traffic, such as the daily commuter traffic between work and residence. Locally, infection dynamics in individual communities are described in terms of a susceptible-exposed-infected-recovered (SEIR) compartment model, modified to account for the specific features of COVID-19, most notably its spread by asymptomatic and presymptomatic infected individuals. The mathematical foundation of our metapopulation network model is akin to a transport scheme between two population distributions, namely the residential distribution and the workplace distribution, whose interface can be inferred from commuter mobility data made available by the US Census Bureau. We use the proposed metapopulation model to test the dynamics of the spread of COVID-19 on two networks, a smaller one comprising 7 counties in the Greater Cleveland area in Ohio, and a larger one consisting of 74 counties in the Pittsburgh–Cleveland–Detroit corridor following the Lake Erie’s American coastline. The model simulations indicate that densely populated regions effectively act as amplifiers of the infection for the surrounding, less densely populated areas, in agreement with the pattern of infections observed in the course of the COVID-19 pandemic. Computed examples show that the model can be used also to test different mitigation strategies, including one based on state-level travel restrictions, another on county level triggered social distancing, as well as a combination of the two.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1686 ◽  
Author(s):  
Nancy Agarwal ◽  
Mudasir Ahmad Wani ◽  
Patrick Bours

This work focuses on designing a grammar detection system that understands both structural and contextual information of sentences for validating whether the English sentences are grammatically correct. Most existing systems model a grammar detector by translating the sentences into sequences of either words appearing in the sentences or syntactic tags holding the grammar knowledge of the sentences. In this paper, we show that both these sequencing approaches have limitations. The former model is over specific, whereas the latter model is over generalized, which in turn affects the performance of the grammar classifier. Therefore, the paper proposes a new sequencing approach that contains both information, linguistic as well as syntactic, of a sentence. We call this sequence a Lex-Pos sequence. The main objective of the paper is to demonstrate that the proposed Lex-Pos sequence has the potential to imbibe the specific nature of the linguistic words (i.e., lexicals) and generic structural characteristics of a sentence via Part-Of-Speech (POS) tags, and so, can lead to a significant improvement in detecting grammar errors. Furthermore, the paper proposes a new vector representation technique, Word Embedding One-Hot Encoding (WEOE) to transform this Lex-Pos into mathematical values. The paper also introduces a new error induction technique to artificially generate the POS tag specific incorrect sentences for training. The classifier is trained using two corpora of incorrect sentences, one with general errors and another with POS tag specific errors. Long Short-Term Memory (LSTM) neural network architecture has been employed to build the grammar classifier. The study conducts nine experiments to validate the strength of the Lex-Pos sequences. The Lex-Pos -based models are observed as superior in two ways: (1) they give more accurate predictions; and (2) they are more stable as lesser accuracy drops have been recorded from training to testing. To further prove the potential of the proposed Lex-Pos -based model, we compare it with some well known existing studies.


2021 ◽  
Vol 11 (9) ◽  
pp. 4070
Author(s):  
Rabiul Hasan Kabir ◽  
Kooktae Lee

This paper addresses a wildlife monitoring problem using a team of unmanned aerial vehicles (UAVs) with the optimal transport theory. The state-of-the-art technology using UAVs has been an increasingly popular tool to monitor wildlife compared to the traditional methods such as satellite imagery-based sensing or GPS trackers. However, there still exist unsolved problems as to how the UAVs need to cover a spacious domain to detect animals as many as possible. In this paper, we propose the optimal transport-based wildlife monitoring strategy for a multi-UAV system, to prioritize monitoring areas while incorporating complementary information such as GPS trackers and satellite-based sensing. Through the proposed scheme, the UAVs can explore the large-size domain effectively and collaboratively with a given priority. The time-varying nature of wildlife due to their movements is modeled as a stochastic process, which is included in the proposed work to reflect the spatio-temporal evolution of their position estimation. In this way, the proposed monitoring plan can lead to wildlife monitoring with a high detection rate. Various simulation results including statistical data are provided to validate the proposed work. In all different simulations, it is shown that the proposed scheme significantly outperforms other UAV-based wildlife monitoring strategies in terms of the target detection rate up to 3.6 times.


Author(s):  
Lorenzo Zanelli

In this paper, we recover a class of displacement interpolations of probability measures, in the sense of the Optimal Transport theory, by means of semiclassical measures associated with solutions of Schrödinger equation defined on the flat torus. Moreover, we prove the completing viewpoint by proving that a family of displacement interpolations can always be viewed as a path of time-dependent semiclassical measures.


Author(s):  
Tengfei Ma ◽  
Shasha Wang ◽  
Yuting Xia ◽  
Xinhua Zhu ◽  
Julian Evans ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document