scholarly journals Literature Review on High Definition Image Error Concealment

2018 ◽  
Vol 7 (3.12) ◽  
pp. 165
Author(s):  
Ghouse Ahamed Z ◽  
Anuj Jain

This paper is give us a overview of Error control method used in image or video transmission. Data in transmission is lost due to link failure or due to congestion and loss in packets, so the aim of this method is to protect data from these errors. Error detection coding and Error correction coding are two types of error control mechanism. Some of the error control mechanisms are Retransmission, Forward error correction, error concealment and error resilience. We are discussing a summary of three methods and Error Concealment in details.  

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 122
Author(s):  
Svitlana Matsenko ◽  
Oleksiy Borysenko ◽  
Sandis Spolitis ◽  
Aleksejs Udalcovs ◽  
Lilita Gegere ◽  
...  

Forward error correction (FEC) codes combined with high-order modulator formats, i.e., coded modulation (CM), are essential in optical communication networks to achieve highly efficient and reliable communication. The task of providing additional error control in the design of CM systems with high-performance requirements remains urgent. As an additional control of CM systems, we propose to use indivisible error detection codes based on a positional number system. In this work, we evaluated the indivisible code using the average probability method (APM) for the binary symmetric channel (BSC), which has the simplicity, versatility and reliability of the estimate, which is close to reality. The APM allows for evaluation and compares indivisible codes according to parameters of correct transmission, and detectable and undetectable errors. Indivisible codes allow for the end-to-end (E2E) control of the transmission and processing of information in digital systems and design devices with a regular structure and high speed. This study researched a fractal decoder device for additional error control, implemented in field-programmable gate array (FPGA) software with FEC for short-reach optical interconnects with multilevel pulse amplitude (PAM-M) modulated with Gray code mapping. Indivisible codes with natural redundancy require far fewer hardware costs to develop and implement encoding and decoding devices with a sufficiently high error detection efficiency. We achieved a reduction in hardware costs for a fractal decoder by using the fractal property of the indivisible code from 10% to 30% for different n while receiving the reciprocal of the golden ratio.


2021 ◽  
Author(s):  
Xinyu Wang ◽  
Kai Shi ◽  
Jinsong Wang ◽  
Sheng Lin ◽  
Guangping Xu ◽  
...  

Abstract The reliability of information transmission has a significant influence on network performance, so it has attracted extensive attention from researchers. Many error control mechanisms have been designed and proposed in order to improve the reliability of transmission. However, during transmission in wireless networks, high bit error rate and burst errors often occur, which poses great challenges in the design of error control mechanisms. The existing mechanisms suffer from a problem of either poor error correction ability or waste of network resources. The primary aim of this study is to develop an error control mechanism based on Reed-Solomon (RS) codes, which encodes packets using RS codes, and a re-encoding algorithm is designed for reducing the coded packet length. The proposed error control mechanism can not only reduce the number of redundant bits in the transmission process but also improve the error correction ability as much as possible when burst errors occur. Therefore, both the error correction ability and the network utility are considered in this work. The proposed mechanism was verified through theoretic analysis and by experiments using the NS2 simulator. The experimental results verified the error control ability and throughput performance of the proposed mechanism.


2021 ◽  
Author(s):  
XINYU WANG ◽  
KAI SHI ◽  
JINSONG WANG ◽  
SHENG LIN ◽  
GUANGPING XU ◽  
...  

Abstract The reliability of information transmission has a significant influence on network performance, so it has attracted extensive attention from researchers. Many error control mechanisms have been designed and proposed in order to improve the reliability of transmission. However, during transmission in wireless networks, high bit error rate and burst errors often occur, which poses great challenges in the design of error control mechanisms. The existing mechanisms suffer from a problem of either poor error correction ability or waste of network resources. The primary aim of this study is to develop an error control mechanism based on Reed-Solomon (RS) codes, which encodes packets using RS codes, and a re-encoding algorithm is designed for reducing the coded packet length. The proposed error control mechanism can not only reduce the number of redundant bits in the transmission process but also improve the error correction ability as much as possible when burst errors occur. Therefore, both the error correction ability and the network utility are considered in this work. The proposed mechanism was verified by experiments using the NS2 simulator. The experimental results verified the error control ability and throughput performance of the proposed mechanism.


2021 ◽  
Vol 11 (11) ◽  
pp. 1393
Author(s):  
Saugat Bhattacharyya ◽  
Mitsuhiro Hayashibe

 This study is aimed at the detection of single-trial feedback, perceived as erroneous by the user, using a transferable classification system while conducting a motor imagery brain–computer interfacing (BCI) task. The feedback received by the users are relayed from a functional electrical stimulation (FES) device and hence are somato-sensory in nature. The BCI system designed for this study activates an electrical stimulator placed on the left hand, right hand, left foot, and right foot of the user. Trials containing erroneous feedback can be detected from the neural signals in form of the error related potential (ErrP). The inclusion of neuro-feedback during the experiments indicated the possibility that ErrP signals can be evoked when the participant perceives an error from the feedback. Hence, to detect such feedback using ErrP, a transferable (offline) decoder based on optimal transport theory is introduced herein. The offline system detects single-trial erroneous trials from the feedback period of an online neuro-feedback BCI system. The results of the FES-based feedback BCI system were compared to a similar visual-based (VIS) feedback system. Using our framework, the error detector systems for both the FES and VIS feedback paradigms achieved an F1-score of 92.66% and 83.10%, respectively, and are significantly superior to a comparative system where an optimal transport was not used. It is expected that this form of transferable and automated error detection system compounded with a motor imagery system will augment the performance of a BCI and provide a better BCI-based neuro-rehabilitation protocol that has an error control mechanism embedded into it. 


1980 ◽  
Vol 17 (1) ◽  
pp. 67-75
Author(s):  
D. H. Green ◽  
A. P. Ambler

The feasibility of employing a microprocessor to perform the various tasks involved with the implementation of a number of well known error-control coding schemes is investigated. It is demonstrated that reasonable data-rates can be achieved with even quite powerful codes.


2012 ◽  
Vol 605-607 ◽  
pp. 2475-2478
Author(s):  
Xue Wen Ding ◽  
Yalemtsehay Gared Dagnew ◽  
Ai Ping Yang

The quality of decoded video in erroneous environment depends on efficient detection and concealment of errors. In this paper, an improved error detection technique and a novel temporal error concealment technique for MPEG-4 video are proposed. The proposed detection technique can detect efficiently some transmission error as well locate the exact position of the first error. The proposed temporal concealment method can mask the impairments caused by the detected error significantly with very low computation complexity. Experimental results show the improved detection technique combining with the proposed temporal concealment method can increase the video quality efficiently.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 382
Author(s):  
Lakshmi. S ◽  
Dr. Selvakumar raja.S

In general sensor networks have a wide range of application and also play a major role in developing precision and timely information. Mostly it deals with real world applications and in many cases the data sensed by the nodes should deliver within the time constriction. Meeting the deadlines is mandate for the applications and the data should be processed as soon as possible and without major data losses. The objective of this scheme is to collect data with high accuracy and low latency. Collecting and processing the data by means of aggregation will greatly reduce the congestion data rate. Cross Layer Design based Hybrid Error Control (CLDHEC) mechanism is proposed for reducing error rate occurred in sensor network which includes formation of network, data aggregation and transmission. Error control technique named Adaptive Forward Error Correction is used to defend the video transmission by recovering source information losses. FEC mechanism along with packet range control greatly increases the FEC efficiency in wireless networks. The service quality for different kind of data can be improved by lessening error rate using adaptive error control mechanism with cross layered design during packet aggregation. 


Author(s):  
M. Subramanya ◽  
Shaiesta Khuteja ◽  
K. C. Varun Kumar ◽  
S. Srilatha ◽  
B. V. Srividya

The swift growth in multimedia technology of wireless network has made it mandatory for the efficient transmission across erratic channel. The transmission of encoded video using error control techniques is grabbing a great attention, since it works over the recovery of the lost data and errors in the bit frames which occur as a result of congestion and physical channel fading. Turbo codes are attracting researchers because of their efficient performance. The Turbo code is made up of analogous concatenation of two Recursive Systematic Convolutional (RSC) coders parted by a  non-uniform interleaver. For different code rate and information block lengths greater than 104, these codes are capable of achieving low Bit-error rates (BERs) at SNRs within 1dB of Shannon’s limit. Turbo codes will assist to employ Viterbi decoders. More the number of iterations, higher is the error correction capacity and hence Turbo codes act as an elucidation for obtaining large coding gains.


Author(s):  
Danu Dwi Sanjoyo ◽  
Rendy Munadi ◽  
Ida Wahidah

Penjadwalan pada Long Term Evolution (LTE) memiliki peran dalam melayani kebutuhan bandwidth yang besar. Oleh karena itu, jaringan seluler LTE membutuhkan algoritma penjadwalan yang mampu mengakomodasi informasi keluaran dari proses HARQ untuk meningkatkan fairness. Algoritma penjadwalan dikombinasikan dengan proses HARQ untuk meningkatkan keadilan throughput yang diterima oleh pengguna. Redundancy Version (RV) yang diperoleh dari proses HARQ dikombinasikan dengan nilai prioritas layanan dan Channel Quality Information (CQI) menjadi suatu nilai metrik yang digunakan untuk menentukan prioritas paket pada proses penjadwalan. Algoritma penjadwalan diujikan pada makalah ini adalah Round Robin (RR), Maximum C/I (CI), dan Proportional Fairness (PF). Proses HARQ di penerima melakukan Error Detection (ED) dan Forward Error Correction (FEC) pada paket yang diterima. User Equipment (UE) akan mengirimkan feedback ke eNode-B yang berisi informasi apakah paket berhasil diterima dengan benar atau tidak. Integrasi masing-masing algoritma penjadwalan (RR, CI, dan PF) dengan nilai CQI, rangking paket data, dan RV dapat meningkatkan nilai fairness antarpengguna. Jain�s Fairnees Index, sebagai parameter keadilan, menunjukkan adanya peningkatan keadilan throughput.Kata kunci: LTE, penjadwalan, HARQ, Jain�s Fairness Index


Sign in / Sign up

Export Citation Format

Share Document