scholarly journals Evidence of Energy Metabolism Alterations in Cultured Neonatal Astrocytes Derived from the Ts65Dn Mouse Model of Down Syndrome

2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Bruna L. Zampieri ◽  
Alberto C. S. Costa

For many decades, neurons have been the central focus of studies on the mechanisms underlying the neurodevelopmental and neurodegenerative aspects of Down syndrome (DS). Astrocytes, which were once thought to have only a passive role, are now recognized as active participants of a variety of essential physiological processes in the brain. Alterations in their physiological function have, thus, been increasingly acknowledged as likely initiators of or contributors to the pathogenesis of many nervous system disorders and diseases. In this study, we carried out a series of real-time measurements of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in hippocampal astrocytes derived from neonatal Ts65Dn and euploid control mice using a Seahorse XFp Flux Analyzer. Our results revealed a significant basal OCR increase in neonatal Ts65Dn astrocytes compared with those from control mice, indicating increased oxidative phosphorylation. ECAR did not differ between the groups. Given the importance of astrocytes in brain metabolic function and the linkage between astrocytic and neuronal energy metabolism, these data provide evidence against a pure “neurocentric” vision of DS pathophysiology and support further investigations on the potential contribution of disturbances in astrocytic energy metabolism to cognitive deficits and neurodegeneration associated with DS.

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 779
Author(s):  
Marzia Perluigi ◽  
Antonella Tramutola ◽  
Sara Pagnotta ◽  
Eugenio Barone ◽  
D. Allan Butterfield

Down syndrome (DS) is the most common genetic cause of intellectual disability that is associated with an increased risk to develop early-onset Alzheimer-like dementia (AD). The brain neuropathological features include alteration of redox homeostasis, mitochondrial deficits, inflammation, accumulation of both amyloid beta-peptide oligomers and senile plaques, as well as aggregated hyperphosphorylated tau protein-containing neurofibrillary tangles, among others. It is worth mentioning that some of the triplicated genes encoded are likely to cause increased oxidative stress (OS) conditions that are also associated with reduced cellular responses. Published studies from our laboratories propose that increased oxidative damage occurs early in life in DS population and contributes to age-dependent neurodegeneration. This is the result of damaged, oxidized proteins that belong to degradative systems, antioxidant defense system, neuronal trafficking. and energy metabolism. This review focuses on a key element that regulates redox homeostasis, the transcription factor Nrf2, which is negatively regulated by BACH1, encoded on chromosome 21. The role of the Nrf2/BACH1 axis in DS is under investigation, and the effects of triplicated BACH1 on the transcriptional regulation of Nrf2 are still unknown. In this review, we discuss the physiological relevance of BACH1/Nrf2 signaling in the brain and how the dysfunction of this system affects the redox homeostasis in DS neurons and how this axis may contribute to the transition of DS into DS with AD neuropathology and dementia. Further, some of the evidence collected in AD regarding the potential contribution of BACH1 to neurodegeneration in DS are also discussed.


Author(s):  
Jochen Seitz ◽  
Katharina Bühren ◽  
Georg G. von Polier ◽  
Nicole Heussen ◽  
Beate Herpertz-Dahlmann ◽  
...  

Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.


1990 ◽  
Vol 109 (5) ◽  
pp. 682-685
Author(s):  
V. A. Sorokoumov ◽  
Yu. Ya. Kislyakov ◽  
E. L. Pugacheva ◽  
E. R. Barantsevich ◽  
V. A. Grantyn'

2010 ◽  
Vol 20 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Patrizia Bianchi ◽  
Elisabetta Ciani ◽  
Andrea Contestabile ◽  
Sandra Guidi ◽  
Renata Bartesaghi

Sign in / Sign up

Export Citation Format

Share Document