scholarly journals Cellular Redox Imbalance and Neurochemical Effect in Cognitive-Deficient Old Rats

2018 ◽  
Vol 8 (10) ◽  
pp. 93
Author(s):  
Maria González-Fraguela ◽  
Lisette Blanco-Lezcano ◽  
Caridad Fernandez-Verdecia ◽  
Teresa Serrano Sanchez ◽  
Maria Robinson Agramonte ◽  
...  

The purpose of the present study is to access the linkage between dysregulation of glutamatergic neurotransmission, oxidative metabolism, and serine signaling in age-related cognitive decline. In this work, we evaluated the effect of natural aging in rats on the cognitive abilities for hippocampal-dependent tasks. Oxidative metabolism indicators are glutathione (GSH), malondialdehyde (MDA) concentrations, and cytosolic phospholipase A2 (PLA2) activity. In addition, neurotransmitter amino acid (L-Glutamic acid, γ-aminobutyric acid (GABA), DL-Serine and DL-Aspartic acid) concentrations were studied in brain areas such as the frontal cortex (FC) and hippocampus (HPC). The spatial long-term memory revealed significant differences among experimental groups: the aged rats showed an increase in escape latency to the platform associated with a reduction of crossings and spent less time on the target quadrant than young rats. Glutathione levels decreased for analyzed brain areas linked with a significant increase in MDA concentrations and PLA2 activity in cognitive-deficient old rats. We found glutamate levels only increased in the HPC, whereas a reduced level of serine was found in both regions of interest in cognitive-deficient old rats. We demonstrated that age-related changes in redox metabolism contributed with alterations in synaptic signaling and cognitive impairment.

2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela S. Rivera ◽  
Carolina B. Lindsay ◽  
Carolina A. Oliva ◽  
Francisco Bozinovic ◽  
Nibaldo C. Inestrosa

Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.


E-psychologie ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 94-95
Author(s):  
Radek Trnka ◽  

This report summarizes the main outputs of the finished grant project „Emotional creativity and cognitive decline in the elderly“ (GA ČR 18–26094S), conducted at the Prague College of Psychosocial Studies between the years 2018 and 2020. The main goal of this project was to explore the relationship between emotional creativity, defined as a set of cognitive abilities and personality traits related to the originality of emotional experience, and age-related cognitive impairments in older adults. The results of this project showed that age and age-related cognitive decline influence how people creatively think about their own, as well as other peoples’, emotions. This project produced empirical evidence showing that cognitive decline reduces not only creativity in problem solving, but also reduces the creativity that is closely related to the emotional life of older people. More importantly, the published preliminary study on patients in the early stages of Parkinson’s disease also indicates that emotional creativity could become another diagnostic tool for unveiling the early stages of neurodegenerative diseases in the elderly.


2009 ◽  
Vol 29 (2) ◽  
pp. 309-325 ◽  
Author(s):  
KARIN SLEGERS ◽  
MARTIN P. J. VAN BOXTEL ◽  
JELLE JOLLES

ABSTRACTOlder adults experience more problems than younger people when using everyday technological devices such as personal computers, automatic teller machines and microwave ovens. Such problems may have serious consequences for the autonomy of older adults since the ability to use technology is becoming essential in everyday life. One potential cause of these difficulties is age-related decline of cognitive functions. To test the role of cognitive abilities in performing technological tasks, we designed the Technological Transfer Test (TTT). This new and ecologically valid test comprises eight technological tasks that are common in modern life (operating a CD player, a telephone, an ATM, a train-ticket vending machine, a microwave-oven, an alarm clock, a smart card charging device and a telephone voice menu). The TTT and a comprehensive battery of cognitive tests were administered to 236 healthy adults aged 64–75 years on two separate occasions. The results demonstrated that the performance time for five of the eight tasks was predicted by cognitive abilities. The exact cognitive functions affecting technological performance varied by the technological task. Among several measures and components of cognition, the speed of information processing and cognitive flexibility had the greatest predictive power. The results imply that age-related cognitive decline has a profound effect on the interaction between older adults and technological appliances.


2021 ◽  
Vol 15 ◽  
Author(s):  
Anna Siegert ◽  
Lukas Diedrich ◽  
Andrea Antal

The world's population is aging. With this comes an increase in the prevalence of age-associated diseases, which amplifies the need for novel treatments to counteract cognitive decline in the elderly. One of the recently discussed non-pharmacological approaches is transcranial direct current stimulation (tDCS). TDCS delivers weak electric currents to the brain, thereby modulating cortical excitability and activity. Recent evidence suggests that tDCS, mainly with anodal currents, can be a powerful means to non-invasively enhance cognitive functions in elderly people with age-related cognitive decline. Here, we screened a recently developed tDCS database (http://tdcsdatabase.com) that is an open access source of published tDCS papers and reviewed 16 studies that applied tDCS to healthy older subjects or patients suffering from Alzheimer's Disease or pre-stages. Evaluating potential changes in cognitive abilities we focus on declarative and working memory. Aiming for more standardized protocols, repeated tDCS applications (2 mA, 30 min) over the left dorso-lateral prefrontal cortex (LDLPFC) of elderly people seem to be one of the most efficient non-invasive brain stimulation (NIBS) approaches to slow progressive cognitive deterioration. However, inter-subject variability and brain state differences in health and disease restrict the possibility to generalize stimulation methodology and increase the necessity of personalized protocol adjustment by means of improved neuroimaging techniques and electrical field modeling.


1995 ◽  
Vol 15 (6) ◽  
pp. 1093-1102 ◽  
Author(s):  
M. H. Bassant ◽  
F. Jazat-Poindessous ◽  
Y. Lamour

The effects of the centrally acting anticholinesterases tacrine (tetrahydroaminoacridine, THA) and physostigmine (PHY), on local cerebral glucose utilization (LCGU) have been studied in 27-month-old rats, using the autoradiographic [14C]deoxyglucose technique. THA (10 mg/kg i.p.) increased LCGU significantly in 13 of the 54 regions studied (24%) including insular, parietal, temporal, and retrosplenial cortices, septohippocampal system, thalamus, lateral habenula, and superior colliculus. In these regions, the average THA-induced increase in LCGU was 24% above control. The whole brain mean LCGU was not significantly increased. PHY (0.5 mg/kg) increased LCGU in 18% of the regions (average elevation, 23%). The whole brain mean LCGU increased by 7% ( p < 0.05). The regional distributions of THA- and PHY-induced increases in LCGU were extremely similar and overlapped the distribution of the M2 muscarinic receptors and that of acetylcholinesterase activity, suggesting that the major effects of THA and PHY on LCGU result from their anticholinesterase action. As compared to those of 3-month-old rats, both the number of regions affected and the amplitude of the metabolic activation were significantly less in aged rats. However, the drugs were still active in old rats and compensated for the age-related hypometabolism in some brain areas.


2020 ◽  
Vol 6 ◽  
pp. 233372142091477
Author(s):  
Ann Pearman ◽  
Shevaun D. Neupert ◽  
MacKenzie L. Hughes

Cognitive testing situations can be stressful for both younger and older adults, but threats of cognitive evaluation may be particularly salient among anxious older individuals as they tend to be more concerned than younger adults about their cognitive abilities and age-related cognitive decline. We examined age-related differences in the effect of anxiety on cortisol responses during cognitive testing in a sample of 27 younger ( M = 19.8) and 29 older ( M = 71.2) adults. Older adults with higher anxiety also had higher during-task cortisol (suggesting higher reactivity to testing) than older adults with lower anxiety and young adults. There was no effect of anxiety on cortisol for younger adults. Simultaneously examining subjective (state anxiety) and physiological (cortisol response) indicators of threat during cognitive testing appears to be especially important for older adults with higher state anxiety. The results are important for understanding cortisol reactivity, particularly in older adults. Researchers who administer cognitive tests to older adults and clinicians who work with older adults with cognitive concerns and/or anxiety may want to consider how they present their material.


Author(s):  
Yvonne Rogalski ◽  
Muriel Quintana

The population of older adults is rapidly increasing, as is the number and type of products and interventions proposed to prevent or reduce the risk of age-related cognitive decline. Advocacy and prevention are part of the American Speech-Language-Hearing Association’s (ASHA’s) scope of practice documents, and speech-language pathologists must have basic awareness of the evidence contributing to healthy cognitive aging. In this article, we provide a brief overview outlining the evidence on activity engagement and its effects on cognition in older adults. We explore the current evidence around the activities of eating and drinking with a discussion on the potential benefits of omega-3 fatty acids, polyphenols, alcohol, and coffee. We investigate the evidence on the hypothesized neuroprotective effects of social activity, the evidence on computerized cognitive training, and the emerging behavioral and neuroimaging evidence on physical activity. We conclude that actively aging using a combination of several strategies may be our best line of defense against cognitive decline.


1996 ◽  
Vol 1 (3) ◽  
pp. 166-179 ◽  
Author(s):  
Bo Molander ◽  
Lars Bäckman

Highly skilled miniature golf players were examined in a series of field and laboratory studies. The principal finding from these studies is that young and young adult players (range = 15-38 years) score equally well or better in competition than in training whereas older adult players (range = 46-73 years) perform worse in competitive events than under training conditions. It was also found that the impairment in motor performance on the part of the older players is associated with age-related deficits in basic cognitive abilities, such as memory and attention. These results support the hypothesis that older players may be able to compensate for age-related deficits under relaxed conditions, but not under conditions of high arousal. The possibility of improving the performance of the older players in stressful situations by means of various intervention programs is discussed.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1916-P
Author(s):  
REBECCA L. SCALZO ◽  
GRAHAME F. EVANS ◽  
SARA E. HULL ◽  
LESLIE KNAUB ◽  
LORI A. WALKER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document