scholarly journals An Image-Based Steel Rebar Size Estimation and Counting Method Using a Convolutional Neural Network Combined with Homography

Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 463
Author(s):  
Yoonsoo Shin ◽  
Sekojae Heo ◽  
Sehee Han ◽  
Junhee Kim ◽  
Seunguk Na

Conventionally, the number of steel rebars at construction sites is manually counted by workers. However, this practice gives rise to several problems: it is slow, human-resource-intensive, time-consuming, error-prone, and not very accurate. Consequently, a new method of quickly and accurately counting steel rebars with a minimal number of workers needs to be developed to enhance work efficiency and reduce labor costs at construction sites. In this study, the authors developed an automated system to estimate the size and count the number of steel rebars in bale packing using computer vision techniques based on a convolutional neural network (CNN). A dataset containing 622 images of rebars with a total of 186,522 rebar cross sections and 409 poly tags was established for segmentation rebars and poly tags in images. The images were collected in a full HD resolution of 1920×1080 pixels and then center-cropped to 512 × 512 pixels. Moreover, data augmentation was carried out to create 4668 images for the training dataset. Based on the training dataset, YOLACT-based steel bar size estimation and a counting model with a Box and Mask of over 30 mAP was generated to satisfy the aim of this study. The proposed method, which is a CNN model combined with homography, can estimate the size and count the number of steel rebars in an image quickly and accurately, and the developed method can be applied to real construction sites to efficiently manage the stock of steel rebars.

2020 ◽  
Vol 10 (5) ◽  
pp. 1040-1048 ◽  
Author(s):  
Xianwei Jiang ◽  
Liang Chang ◽  
Yu-Dong Zhang

More than 35 million patients are suffering from Alzheimer’s disease and this number is growing, which puts a heavy burden on countries around the world. Early detection is of benefit, in which the deep learning can aid AD identification effectively and gain ideal results. A novel eight-layer convolutional neural network with batch normalization and dropout techniques for classification of Alzheimer’s disease was proposed. After data augmentation, the training dataset contained 7399 AD patient and 7399 HC subjects. Our eight-layer CNN-BN-DO-DA method yielded a sensitivity of 97.77%, a specificity of 97.76%, a precision of 97.79%, an accuracy of 97.76%, a F1 of 97.76%, and a MCC of 95.56% on the test set, which achieved the best performance in seven state-of-the-art approaches. The results strongly demonstrate that this method can effectively assist the clinical diagnosis of Alzheimer’s disease.


2021 ◽  
Vol 10 (5) ◽  
pp. 1009
Author(s):  
Jun-Young Cha ◽  
Hyung-In Yoon ◽  
In-Sung Yeo ◽  
Kyung-Hoe Huh ◽  
Jung-Suk Han

Determining the peri-implant marginal bone level on radiographs is challenging because the boundaries of the bones around implants are often unclear or the heights of the buccal and lingual bone levels are different. Therefore, a deep convolutional neural network (CNN) was evaluated for detecting the marginal bone level, top, and apex of implants on dental periapical radiographs. An automated assistant system was proposed for calculating the bone loss percentage and classifying the bone resorption severity. A modified region-based CNN (R-CNN) was trained using transfer learning based on Microsoft Common Objects in Context dataset. Overall, 708 periapical radiographic images were divided into training (n = 508), validation (n = 100), and test (n = 100) datasets. The training dataset was randomly enriched by data augmentation. For evaluation, average precision, average recall, and mean object keypoint similarity (OKS) were calculated, and the mean OKS values of the model and a dental clinician were compared. Using detected keypoints, radiographic bone loss was measured and classified. No statistically significant difference was found between the modified R-CNN model and dental clinician for detecting landmarks around dental implants. The modified R-CNN model can be utilized to measure the radiographic peri-implant bone loss ratio to assess the severity of peri-implantitis.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


Friction ◽  
2021 ◽  
Author(s):  
Xiaobin Hu ◽  
Jian Song ◽  
Zhenhua Liao ◽  
Yuhong Liu ◽  
Jian Gao ◽  
...  

AbstractFinding the correct category of wear particles is important to understand the tribological behavior. However, manual identification is tedious and time-consuming. We here propose an automatic morphological residual convolutional neural network (M-RCNN), exploiting the residual knowledge and morphological priors between various particle types. We also employ data augmentation to prevent performance deterioration caused by the extremely imbalanced problem of class distribution. Experimental results indicate that our morphological priors are distinguishable and beneficial to largely boosting overall performance. M-RCNN demonstrates a much higher accuracy (0.940) than the deep residual network (0.845) and support vector machine (0.821). This work provides an effective solution for automatically identifying wear particles and can be a powerful tool to further analyze the failure mechanisms of artificial joints.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hideaki Hirashima ◽  
Mitsuhiro Nakamura ◽  
Pascal Baillehache ◽  
Yusuke Fujimoto ◽  
Shota Nakagawa ◽  
...  

Abstract Background This study aimed to (1) develop a fully residual deep convolutional neural network (CNN)-based segmentation software for computed tomography image segmentation of the male pelvic region and (2) demonstrate its efficiency in the male pelvic region. Methods A total of 470 prostate cancer patients who had undergone intensity-modulated radiotherapy or volumetric-modulated arc therapy were enrolled. Our model was based on FusionNet, a fully residual deep CNN developed to semantically segment biological images. To develop the CNN-based segmentation software, 450 patients were randomly selected and separated into the training, validation and testing groups (270, 90, and 90 patients, respectively). In Experiment 1, to determine the optimal model, we first assessed the segmentation accuracy according to the size of the training dataset (90, 180, and 270 patients). In Experiment 2, the effect of varying the number of training labels on segmentation accuracy was evaluated. After determining the optimal model, in Experiment 3, the developed software was used on the remaining 20 datasets to assess the segmentation accuracy. The volumetric dice similarity coefficient (DSC) and the 95th-percentile Hausdorff distance (95%HD) were calculated to evaluate the segmentation accuracy for each organ in Experiment 3. Results In Experiment 1, the median DSC for the prostate were 0.61 for dataset 1 (90 patients), 0.86 for dataset 2 (180 patients), and 0.86 for dataset 3 (270 patients), respectively. The median DSCs for all the organs increased significantly when the number of training cases increased from 90 to 180 but did not improve upon further increase from 180 to 270. The number of labels applied during training had a little effect on the DSCs in Experiment 2. The optimal model was built by 270 patients and four organs. In Experiment 3, the median of the DSC and the 95%HD values were 0.82 and 3.23 mm for prostate; 0.71 and 3.82 mm for seminal vesicles; 0.89 and 2.65 mm for the rectum; 0.95 and 4.18 mm for the bladder, respectively. Conclusions We have developed a CNN-based segmentation software for the male pelvic region and demonstrated that the CNN-based segmentation software is efficient for the male pelvic region.


2021 ◽  
Vol 11 (13) ◽  
pp. 6085
Author(s):  
Jesus Salido ◽  
Vanesa Lomas ◽  
Jesus Ruiz-Santaquiteria ◽  
Oscar Deniz

There is a great need to implement preventive mechanisms against shootings and terrorist acts in public spaces with a large influx of people. While surveillance cameras have become common, the need for monitoring 24/7 and real-time response requires automatic detection methods. This paper presents a study based on three convolutional neural network (CNN) models applied to the automatic detection of handguns in video surveillance images. It aims to investigate the reduction of false positives by including pose information associated with the way the handguns are held in the images belonging to the training dataset. The results highlighted the best average precision (96.36%) and recall (97.23%) obtained by RetinaNet fine-tuned with the unfrozen ResNet-50 backbone and the best precision (96.23%) and F1 score values (93.36%) obtained by YOLOv3 when it was trained on the dataset including pose information. This last architecture was the only one that showed a consistent improvement—around 2%—when pose information was expressly considered during training.


Author(s):  
Ramesh Adhikari ◽  
Suresh Pokharel

Data augmentation is widely used in image processing and pattern recognition problems in order to increase the richness in diversity of available data. It is commonly used to improve the classification accuracy of images when the available datasets are limited. Deep learning approaches have demonstrated an immense breakthrough in medical diagnostics over the last decade. A significant amount of datasets are needed for the effective training of deep neural networks. The appropriate use of data augmentation techniques prevents the model from over-fitting and thus increases the generalization capability of the network while testing afterward on unseen data. However, it remains a huge challenge to obtain such a large dataset from rare diseases in the medical field. This study presents the synthetic data augmentation technique using Generative Adversarial Networks to evaluate the generalization capability of neural networks using existing data more effectively. In this research, the convolutional neural network (CNN) model is used to classify the X-ray images of the human chest in both normal and pneumonia conditions; then, the synthetic images of the X-ray from the available dataset are generated by using the deep convolutional generative adversarial network (DCGAN) model. Finally, the CNN model is trained again with the original dataset and augmented data generated using the DCGAN model. The classification performance of the CNN model is improved by 3.2% when the augmented data were used along with the originally available dataset.


2020 ◽  
Vol 10 (6) ◽  
pp. 2104
Author(s):  
Michał Tomaszewski ◽  
Paweł Michalski ◽  
Jakub Osuchowski

This article presents an analysis of the effectiveness of object detection in digital images with the application of a limited quantity of input. The possibility of using a limited set of learning data was achieved by developing a detailed scenario of the task, which strictly defined the conditions of detector operation in the considered case of a convolutional neural network. The described solution utilizes known architectures of deep neural networks in the process of learning and object detection. The article presents comparisons of results from detecting the most popular deep neural networks while maintaining a limited training set composed of a specific number of selected images from diagnostic video. The analyzed input material was recorded during an inspection flight conducted along high-voltage lines. The object detector was built for a power insulator. The main contribution of the presented papier is the evidence that a limited training set (in our case, just 60 training frames) could be used for object detection, assuming an outdoor scenario with low variability of environmental conditions. The decision of which network will generate the best result for such a limited training set is not a trivial task. Conducted research suggests that the deep neural networks will achieve different levels of effectiveness depending on the amount of training data. The most beneficial results were obtained for two convolutional neural networks: the faster region-convolutional neural network (faster R-CNN) and the region-based fully convolutional network (R-FCN). Faster R-CNN reached the highest AP (average precision) at a level of 0.8 for 60 frames. The R-FCN model gained a worse AP result; however, it can be noted that the relationship between the number of input samples and the obtained results has a significantly lower influence than in the case of other CNN models, which, in the authors’ assessment, is a desired feature in the case of a limited training set.


Sign in / Sign up

Export Citation Format

Share Document