Assessment of Selected Models for FRP-Retrofitted URM Walls under In-Plane Loads

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 559
Author(s):  
Marijana Hadzima-Nyarko ◽  
Stanko Čolak ◽  
Borko Đ. Bulajić ◽  
Naida Ademović

One way to improve a structure’s total load-bearing capacity during an earthquake is to apply fiber-reinforced polymers (FRP) to unreinforced walls. The study discusses the use of FRP to strengthen unreinforced masonry (URM) structures. Although, many studies were conducted on the FRP strengthening of URM buildings, most of them were experiments to investigate the success of retrofitting approaches, rather than developing a successful design model. A database of 120 FRP-reinforced wall samples was created based on the current literature. Various approaches for calculating the bearing capacity of FRP-reinforced masonry are presented and detailed. The findings of the experiments, which were compiled into a database, were compared to those derived using formulas from the literature and/or building codes, and the model’s limitations are discussed.

2015 ◽  
Vol 660 ◽  
pp. 208-212 ◽  
Author(s):  
Mihai Fofiu ◽  
Andrei Bindean ◽  
Valeriu Stoian

This paper presents the retrofitting procedure used on a precast reinforced concrete wall panel (PRCWP) in order to restore its initial load bearing capacity. The specimen used in this experimental test is one from the residential multistoried buildings constructed in Romania from the 1970 onwards. All of the characteristics of the element are from the specific era, only scaled down with a factor of 1:1,2. The element was subjected to in-plane reversed cyclic loading to simulate its seismic behavior and obtain its maximum load bearing capacity. After the test we retrofitted the element using Carbon Fiber Strips Externally Bonded (EBR) and anchored with Carbon Fiber Reinforced Polymers (CFRP) mesh. The porpoise of the paper is to compare the maximum loading bearing capacity of the unstrengthen and strengthen elements in order to compare them and examine the efficiency of this retrofitting procedure.


2011 ◽  
Vol 82 ◽  
pp. 600-605 ◽  
Author(s):  
G.C. Manos ◽  
Konstantinos Katakalos ◽  
V. Kourtides

The aim of this study is to investigate the influence of concrete surface preparation when either steel or carbon fiber reinforced polymers (FRP) are applied for strengthening applications of R/C members. The present study also investigates the anchorage or not of the applied FRP strips on the volume of concrete. For this purpose special concrete specimens were fabricated and were used to attach CFRP or SRP strips with or without anchoring and with or without contact surface treatment. The experimental results indicate that the concrete surface preparation is important and results in an increase of the load bearing capacity when the FRP strip is not anchored. When an anchoring device is employed, the concrete surface preparation is of no significance. With a properly designed anchoring device, a significant increase in the bearing capacity was observed and the failure was that of the fracture of the FRP strips for all such specimens. The highest FRP material exploitation was achieved in the specimen that utilises the patented anchoring device together with two layers of SRP strips. Debonding of the FRP strips, or failure of the anchoring device, results as was to be expected, in relatively unsatisfactory FRP material exploitation.


2017 ◽  
Vol 62 (1) ◽  
pp. 163-176 ◽  
Author(s):  
Petr Horyl ◽  
Richard Šňupárek ◽  
Pavel Maršálek ◽  
Krzysztof Pacześniowski

Abstract The total load-bearing capacity of steel arch yielding roadways supports is among their most important characteristics. These values can be obtained in two ways: experimental measurements in a specialized laboratory or computer modelling by FEM. Experimental measurements are significantly more expensive and more time-consuming. However, for proper tuning, a computer model is very valuable and can provide the necessary verification by experiment. In the cooperating workplaces of GIG Katowice, VSB-Technical University of Ostrava and the Institute of Geonics ASCR this verification was successful. The present article discusses the conditions and results of this verification for static problems. The output is a tuned computer model, which may be used for other calculations to obtain the load-bearing capacity of other types of steel arch supports. Changes in other parameters such as the material properties of steel, size torques, friction coefficient values etc. can be determined relatively quickly by changing the properties of the investigated steel arch supports.


Author(s):  
A. A. Koyankin ◽  
V. M. Mitasov ◽  
I. Ya. Petuhova ◽  
T. A. Tshay

The stress-strain state of the prefabricated monolithic element depends on its gradual installation and loading. Regulatory documents of the Russian Federation indicate the need to calculate precast-monolithic structures for two stages of construction: before and after the specified monolithic concrete strength acquired. In this case, the stress-strain state that appeared in the prefabricated elements before the specified monolithic concrete strength should be considered.  However, the construction and loading stages at issue and accumulation of stresses and strains are not disclosed in the regulatory documents. In addition, this problem is insufficiently studied.  In this regard, the aim of this paper is to study the pre-loading effect of the prefabricated element on its stress-strain state and the load-bearing capacity.  During the experiments, a pre-loaded prefabricated part is studied. The obtained results are compared with instantaneously loaded test samples. Other parameters of the experimental models are completely identical. In all, 5 samples are tested (step-by-step loading of 3 samples and instantaneous loading of 2 samples).  It is shown that pre-loading of the preloaded prefabricated part significantly affects the stress-strain state of the whole structure and its total load-bearing capacity.  


2019 ◽  
Vol 11 (19) ◽  
pp. 5199 ◽  
Author(s):  
Wenxian Ma ◽  
Chunxiang Yin ◽  
Jun Zhou ◽  
Lu Wang

The mechanical properties of both concrete and steel reinforcement, and the load-bearing capacity of reinforced concrete (RC) structures are well known to be temperature-sensitive, as demonstrated by the severe damage that major fires cause in buildings, followed—in extreme cases—by their collapse. Since in most cases RC structures survive a fire, retrofitting fire-damaged RC members is a hot subject today. In this paper, after a recall on the performance of RC beams and slabs in fire, different repair techniques are considered, among them externally bonded reinforcement, near surface-mounted fiber-reinforced polymers (FRP), bolted side plating, jacketing with high- and ultra-high performance concretes or mortars, and damaged-concrete replacement. Last but not least, the design equations aimed at evaluating the residual load-bearing capacity after repairing are also presented and discussed.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


Sign in / Sign up

Export Citation Format

Share Document