scholarly journals Repair of Fire-Damaged Reinforced Concrete Flexural Members: A Review

2019 ◽  
Vol 11 (19) ◽  
pp. 5199 ◽  
Author(s):  
Wenxian Ma ◽  
Chunxiang Yin ◽  
Jun Zhou ◽  
Lu Wang

The mechanical properties of both concrete and steel reinforcement, and the load-bearing capacity of reinforced concrete (RC) structures are well known to be temperature-sensitive, as demonstrated by the severe damage that major fires cause in buildings, followed—in extreme cases—by their collapse. Since in most cases RC structures survive a fire, retrofitting fire-damaged RC members is a hot subject today. In this paper, after a recall on the performance of RC beams and slabs in fire, different repair techniques are considered, among them externally bonded reinforcement, near surface-mounted fiber-reinforced polymers (FRP), bolted side plating, jacketing with high- and ultra-high performance concretes or mortars, and damaged-concrete replacement. Last but not least, the design equations aimed at evaluating the residual load-bearing capacity after repairing are also presented and discussed.

2015 ◽  
Vol 660 ◽  
pp. 208-212 ◽  
Author(s):  
Mihai Fofiu ◽  
Andrei Bindean ◽  
Valeriu Stoian

This paper presents the retrofitting procedure used on a precast reinforced concrete wall panel (PRCWP) in order to restore its initial load bearing capacity. The specimen used in this experimental test is one from the residential multistoried buildings constructed in Romania from the 1970 onwards. All of the characteristics of the element are from the specific era, only scaled down with a factor of 1:1,2. The element was subjected to in-plane reversed cyclic loading to simulate its seismic behavior and obtain its maximum load bearing capacity. After the test we retrofitted the element using Carbon Fiber Strips Externally Bonded (EBR) and anchored with Carbon Fiber Reinforced Polymers (CFRP) mesh. The porpoise of the paper is to compare the maximum loading bearing capacity of the unstrengthen and strengthen elements in order to compare them and examine the efficiency of this retrofitting procedure.


CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 556-579
Author(s):  
Szymon Grzesiak ◽  
Matthias Pahn ◽  
Milan Schultz-Cornelius ◽  
Nora Susanne Bies

The behaviour of façade anchors in high performance fiber reinforced concrete (HPFRC) has not been investigated in sufficient detail in recent years. The regulations in the European Technical Approvals also do not fully describe the load-bearing capacity of anchor systems. Due to the increase in the production of HPFRC elements, it is necessary to analyse the impact of added fibers in the concrete composition on the behaviour of anchors. In particular, the behaviour of anchors in filigree façade elements, which is one of the main application areas of the programme of polypropylene (PP) fiber-reinforced concrete, is therefore analysed. With a sufficient content of PP fibers surrounding the steel anchors oriented in an optimal direction, the fibers may enhance both the load-bearing capacity of anchors and the ductility of concrete. However, unfavourable effects on the installation process or even on the load-bearing capacity may also occur due to unfavourable fiber orientation. Therefore, tensile and punching tests were carried out in uncracked concrete with different types of anchor systems containing a tension anchor and an adjustable spacer bolt. The PP fiber content of the concrete component varied during the tests.


2020 ◽  
Vol 23 (11) ◽  
pp. 2276-2291
Author(s):  
Rui Pang ◽  
Yibo Zhang ◽  
Longji Dang ◽  
Lanbo Zhang ◽  
Shuting Liang

This article proposes a new type of discrete connected precast reinforced concrete diaphragm floor system that consists of precast flat slabs and slab joint connectors. An experimental investigation of discrete connected new-type precast reinforced concrete diaphragm under a vertical distributed static load was conducted, and the effect of slab joint connectors on the load-bearing capacity was evaluated. Then, a finite element analysis of discrete connected new-type precast reinforced concrete diaphragm, precast reinforced concrete floors without slab connectors, and cast-in-situ reinforced concrete floor were performed to understand their working mechanism and determine the differences in load-bearing behavior. The results indicate that the load-bearing capacity and stiffness of discrete connected new-type precast reinforced concrete diaphragm increase considerably as the hairpin and cover plate hybrid slab joint connectors can efficiently connect adjacent precast slabs and enable them to work together under a vertical load by transmitting the shear and moment forces in the orthogonal slab laying direction. The deflection of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction is mainly caused by the opening deformation of the slab joint and the rotational deformation of the precast slabs. This flexural deformation feature can provide reference for establishing the bending stiffness analytical model of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction, which is vitally important for foundation of the vertical bearing capacity and deformation calculation method. The deflection and crack distribution patterns infer that the discrete connected new-type precast reinforced concrete diaphragm processes the deformation characteristic of two-way slab floor, which can provide a basis for the theoretical analysis of discrete connected new-type precast reinforced concrete diaphragm.


2019 ◽  
Vol 97 ◽  
pp. 04059 ◽  
Author(s):  
Alexey Dem’yanov ◽  
Vladymir Kolchunov ◽  
Igor Iakovenko ◽  
Anastasiya Kozarez

It is presented the formulation and solution of the load bearing capacity of statically indeterminable systems “reinforced concrete beam – deformable base” by spatial cross-sections under force and deformation effects. The solution of problem is currently practically absent in general form. It has been established the relationship between stresses and strains of compressed concrete and tensile reinforcement in the form of diagrams. The properties of the base model connections are described based on a variable rigidity coefficient. It is constructed a system of n equations in the form of the initial parameters method with using the modules of the force (strain) action vector. The equations of state are the dependences that establish the relationship between displacements which are acting on the beam with load. Constants of integration are determined by recurrent formulas. It makes possible to obtain the method of initial parameters in the expanded form and, consequently, the method of displacements for calculating statically indefinable systems. The values of the effort obtained could be used to determine the curvature and rigidity of the sections in this way. It is necessary not to set the vector modulusP, the deformation is set in any section (the module is considered as an unknown) during the problem is solving. This allows us to obtain an unambiguous solution even in the case when the dependence M–χ has a downward section, i.e one value of moment can correspond to two values of curvature.


2016 ◽  
Vol 821 ◽  
pp. 767-773
Author(s):  
Jan Krejsa ◽  
Miroslav Sýkora ◽  
Michal Drahorád

This paper is aimed at the reliability analysis of an existing reinforced concrete bridge from 1908. The load bearing capacity is assessed in accordance with valid standards using the partial factor method and probabilistic approach. Load bearing capacities obtained by these methods are critically compared. The application of probabilistic method leads to 40 % higher load bearing capacity then the partial factor method used for structural design.


2020 ◽  
Vol 165 ◽  
pp. 04056
Author(s):  
An Zhao ◽  
Qiang Xu ◽  
Jianyong Song

The intelligent evaluation system of existing reinforced concrete bridge “BLP” is a special software for the load-bearing capacity rapid analysis and evaluation of the existing reinforced concrete bridge, which was developed by the Highway Research Institute of the Ministry of Transport. Based on the parametric modelling method, it can quickly and easily establish the finite element plane model of the bridge structure for the static analysis of ultimate bearing capacity limit states and serviceability limit state, under variety norms. And it can easily and quickly build variable-section beams and rebars, with the special module. According to the comprehensive modification method of the load-bearing capacity evaluation, it can automatically recommend checking sections, and automatically calculate partial modification coefficient of resistance effect, and conveniently judge the safety coefficient of the sections, and quickly get the results of bridge load-bearing capacity. In summary, this system can significantly improve the work efficiency and accuracy of load-bearing capacity for exiting reinforced concrete bridge. This paper introduces in detail the characteristics of the intelligent analysis technology, calculation principle and real bridge application examples of the system.


Sign in / Sign up

Export Citation Format

Share Document