scholarly journals Two-Stage Lifecycle Energy Optimization of Mid-Rise Residential Buildings with Building-Integrated Photovoltaic and Alternative Composite Façade Materials

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 642
Author(s):  
Mark Kyeredey Ansah ◽  
Xi Chen ◽  
Hongxing Yang

Reducing the lifecycle energy use of buildings with renewable energy applications has become critical given the urgent need to decarbonize the building sector. Multi-objective optimizations have been widely applied to reduce the operational energy use of buildings, but limited studies concern the embodied or whole lifecycle energy use. Consequently, there are issues such as sub-optimal design solutions and unclear correlation between embodied and operational energy in the current building energy assessment. To address these gaps, this study integrates a multi-objective optimization method with building energy simulation and lifecycle assessment (LCA) to explore the optimal configuration of different building envelopes from a lifecycle perspective. Major contributions of the study include the integrated optimization which reflects the dynamics of the whole lifecycle energy use. Insights from the study reveal the optimal configuration of PV and composite building façades for different regions in sub-Saharan Africa. The lifecycle energy use for the optimized building design resulted in 24.59, 33.33, and 36.93% energy savings in Ghana, Burkina Faso, and Nigeria, respectively. Additionally, PV power generation can efficiently cover over 90% of the total building energy demand. This study provides valuable insights for building designers in sub-Saharan Africa and similar areas that minimize lifecycle energy demand.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4954
Author(s):  
Mohammad AlHashmi ◽  
Gyan Chhipi-Shrestha ◽  
Kh Md. Nahiduzzaman ◽  
Kasun Hewage ◽  
Rehan Sadiq

Rapid population growth has led to significant demand for residential buildings around the world. Consequently, there is a growing energy demand associated with increased greenhouse gas (GHG) emissions. The residential building energy demand in arid countries such as Saudi Arabia is supplied with fossil fuel. The existing consumption pattern of fossil fuels in Saudi Arabia is less sustainable due to the depletion of fossil fuel resources and resulting environmental impacts. Buildings built in hot and arid climatic conditions demand high energy for creating habitable indoor environments. Enormous energy is required to maintain a cool temperature in hot regions. Moreover, climate change may have different impacts on hot climatic regions and affect building energy use differently. This means that different building interventions may be required to improve the performance of building energy performance in these geographical regions, thereby reducing the emissions of GHGs. In this study, this framework has been applied to Saudi Arabia, a hot and arid country. This research proposes a community–government partnership framework for developing low-carbon energy in residential buildings. This study focuses on both the operational energy demand and a cost-benefit analysis of energy use in the selected geographical regions for the next 30 years (i.e., 2050). The proposed framework primarily consists of four stages: (1) data collection on energy use (2020 to 2050); (2) setting a GHG emissions reduction target; (3) a building intervention approach by the community by considering cost, energy, and GHG emissions using the Technique for Order of Performance by Similarity to the Ideal Solution (TOPSIS) to select the best combinations in each geographical region conducting 180 simulations; and (4) a clean energy approach by the government using grey relational analysis (GRA) to select the best clean energy system on the grid. The clean energy approach selected six different renewable power generation systems (i.e., PV array, wind turbine, hybrid system) with two storage systems (i.e., battery bank and a combination of electrolyte, fuel cell, and hydrogen tank storage). This approach is designed to identify the best clean energy systems in five geographical regions with thirty scenario analyses to define renewable energy-economy benefits. This framework informs through many engineering tools such as residential building energy analysis, renewable energy analysis, multi-criteria decision analysis (MCDA) techniques, and cost-benefit analysis. Integration between these engineering tools with the set of energy policies and public initiatives is designed to achieve further directives in the effort to reach greater efficiency while downsizing residential energy demands. The results of this paper propose that a certain level of cooperation is required between the community and the government in terms of financial investments and the best combinations of retrofits and clean energy measures. Thus, retrofits and clean energy measures can help save carbon emissions (enhancing the energy performance of buildings) and decrease associated GHG emissions, which can help policy makers to achieve low-carbon emission communities.


Author(s):  
Rawad El Kontar ◽  
Xin Jin

Abstract Optimizing the placement of photovoltaic (PV) panels on residential buildings has the potential to significantly increase energy efficiency benefits to both homeowners and communities. Strategic PV placement can lower electricity costs by reducing the electricity fed from the grid during on-peak hours, while maintaining PV panel efficiency in terms of the amount of solar radiation received. In this article, we present a framework that identifies the ideal location of PV panels on residential rooftops. Our framework combines energy and environmental simulation, parametric modeling, and optimization to inform PV placement as it relates to and affects the entire community (in terms of both energy use and financial cost), as well as individual buildings. Ensuring that our framework accounts for shading from nearby buildings, different utility rate structures, and different buildings’ energy demand profiles means that existing communities and future housing developments can be optimized for energy savings and PV efficiency. The framework comprises two workflows, each contributing to optimal PV placement with a unique target: (a) maximizing PV panel efficiency (i.e., solar generation) and (b) minimizing operational energy cost considering utility rate structures for operational energy. We apply our framework to a residential community in Fort Collins, Colorado, to demonstrate the optimal PV placement, considering the two workflow targets. We present our results and illustrate the effect of PV location and orientation on solar energy production efficiency and operational energy cost.


2020 ◽  
Vol 172 ◽  
pp. 02009
Author(s):  
André Badura ◽  
Birgit Mueller ◽  
Ivo Martinac

Large and rapid climatic changes can be uncomfortable and sometimes hazardous to humans. Buildings protect people from external climatic conditions, and also mitigate the impacts of external climate extremes through their design and construction, as well as with the help of dedicated building service and other technical systems. Active space conditioning accounts for more than 30 per cent of the overall final energy use in Germany. In the life cycle of a building, the construction phase (planning and construction) is the phase with the shortest duration. However, the quality applied during this phase has a significant impact on the resources required, as well as the overall building performance during the much longer operational phase. Once built, buildings are often unable to adapt to boundary conditions that were not considered in the original building design. Consequently, changing outdoor climate conditions can result in an uncomfortable indoor climate over the lifetime of a building. The aim of this study was to determine the effectiveness of flexible solutions for reducing winter heating loads and to reducing/avoiding summer cooling loads in nonresidential buildings in Germany. Various external shading scenarios for non-residential buildings were analysed using the IDA ICE indoor climate and energy simulation tool. Key simulation parameters included the orientation and location of the building, as well as the envelope structure. We investigated the impacts of solar shading on heat storage in the building mass and indoor climate and how different types of envelopes affect overall energy use. The result shows that the use of an adaptive building envelope allows a higher reduction of the total energy demand by 7 % to 15 % compared to an increase in insulation thickness only.


2021 ◽  
Vol 13 (12) ◽  
pp. 6791
Author(s):  
Luka Pajek ◽  
Mitja Košir

Climate change is expected to expose the locked-in overheating risk concerning bioclimatic buildings adapted to a specific past climate state. The study aims to find energy-efficient building designs which are most resilient to overheating and increased cooling energy demands that will result from ongoing climate change. Therefore, a comprehensive parametric study of various passive building design measures was implemented, simulating the energy use of each combination for a temperate climate of Ljubljana, Slovenia. The approach to overheating vulnerability assessment was devised and applied using the increase in cooling energy demand as a performance indicator. The results showed that a B1 heating energy efficiency class according to the Slovenian Energy Performance Certificate classification was the highest attainable using the selected passive design parameters, while the energy demand for heating is projected to decrease over time. In contrast, the energy use for cooling is in general projected to increase. Furthermore, it was found that, in building models with higher heating energy use, low overheating vulnerability is easier to achieve. However, in models with high heating energy efficiency, very high overheating vulnerability is not expected. Accordingly, buildings should be designed for current heating energy efficiency and low vulnerability to future overheating. The paper shows a novel approach to bioclimatic building design with global warming adaptation integrated into the design process. It delivers recommendations for the energy-efficient, robust bioclimatic design of residential buildings in the Central European context, which are intended to guide designers and policymakers towards a resilient and sustainable built environment.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 255
Author(s):  
Muataz Dhaif ◽  
André Stephan

In hot and humid climatic conditions, cooling tends to dominate building thermal energy use. Cooling loads can be reduced through the adoption of efficient building envelope materials, such as Structural Insulated Panels (SIPs). This study quantifies the life cycle cost and operational energy of a representative case-study house in Bahrain using SIPs and hollow concrete blocks (HCBs) for the envelope over a period of 50 years. Operational energy is calculated using a dynamic energy simulation tool, operational costs are calculated based on the energy demand and local tariff rates, and construction costs are estimated using market prices and quotations. The life cycle cost is quantified using the Net Present Cost technique. Results show that SIPs yield a 20.6% reduction in cooling energy use compared to HCBs. For SIP costs of 12 and 17 USD/m², the SIP house was cheaper throughout, or had a higher capital cost than the HCB house (breaking even in year 33), respectively. We propose policy recommendations with respect to material pricing, electricity tariffs, and energy efficiency, to improve the operational energy efficiency of houses in Bahrain and similar countries along the Arabian Peninsula.


2021 ◽  
Author(s):  
◽  
Dekhani Juvenalis Dukakis Nsaliwa

<p>In most developed economies, buildings are directly and indirectly accountable for at least 40% of the final energy use. Consequently, most world cities are increasingly surpassing sensitive environmental boundaries and continue to reach critical biophysical thresholds. Climate change is one of the biggest threats humanity faces today and there is an urgent need to reduce energy use and CO₂ emissions globally to zero or to less than zero, to address climate change. This often leads to the assumption that buildings must reduce energy demand and emit radically less CO₂ during construction and occupation periods. Certainly, this is often implemented through delivering ‘zero energy buildings’. The deployment of residential buildings which meet the zero energy criteria thereby allowing neighbourhoods and cities to convert to semi-autonomous energy systems is seen to have a promising potential for reducing and even eliminating energy demand and the associated greenhouse gas emissions. However, most current zero energy building approaches focus solely on operational energy overlooking other energy uses such as embodied energy and user transport energy. Embodied energy constitutes all energy requirements for manufacturing building materials, construction and replacement. Transport energy comprises the amount of energy required to provide mobility services to building users.  Zero energy building design decisions based on partial evaluation and quantification approaches might result in an increased energy demand at different or multiple scales of the built environment. Indeed, recent studies have demonstrated that embodied and transport energy demands account for more than half of the total annual energy demand of residential buildings built based on zero energy criteria. Current zero energy building frameworks, tools and policies therefore may overlook more than ~80% of the total net energy balance annually.  The original contribution of this thesis is an integrated multi-scale zero energy building framework which has the capacity to gauge the relative effectiveness towards the deployment of zero energy residential buildings and neighbourhoods. This framework takes into account energy requirements and CO₂ emissions at the building scale, i.e. the embodied energy and operation energy demands, and at the city scale, i.e. the embodied energy of related transport modes including infrastructure and the transport operational energy demand of its users. This framework is implemented through the development of a quantification methodology which allows the analysis and evaluation of energy demand and CO₂ emissions pertaining to the deployment of zero energy residential buildings and districts. A case study, located in Auckland, New Zealand is used to verify, validate and investigate the potential of the developed framework.  Results confirm that each of the building (embodied and operational) and transport (embodied and operational) energy requirements represent a very significant share of the annual overall energy demand and associated CO₂ emissions of zero energy buildings. Consequently, rather than the respect of achieving a net zero energy building balance at the building scale, the research has revealed that it is more important, above all, to minimise building user-related and transportation energy demand at the city scale and maximise renewable energy production coupled with efficiency improvements at grid level. The application of the developed evaluation framework will enable building designers, urban planners, researchers and policy makers to deliver effective multi-scale zero energy building strategies which will ultimately contribute to reducing the overall environmental impact of the built environment today.</p>


2021 ◽  
Author(s):  
◽  
Dekhani Juvenalis Dukakis Nsaliwa

<p>In most developed economies, buildings are directly and indirectly accountable for at least 40% of the final energy use. Consequently, most world cities are increasingly surpassing sensitive environmental boundaries and continue to reach critical biophysical thresholds. Climate change is one of the biggest threats humanity faces today and there is an urgent need to reduce energy use and CO₂ emissions globally to zero or to less than zero, to address climate change. This often leads to the assumption that buildings must reduce energy demand and emit radically less CO₂ during construction and occupation periods. Certainly, this is often implemented through delivering ‘zero energy buildings’. The deployment of residential buildings which meet the zero energy criteria thereby allowing neighbourhoods and cities to convert to semi-autonomous energy systems is seen to have a promising potential for reducing and even eliminating energy demand and the associated greenhouse gas emissions. However, most current zero energy building approaches focus solely on operational energy overlooking other energy uses such as embodied energy and user transport energy. Embodied energy constitutes all energy requirements for manufacturing building materials, construction and replacement. Transport energy comprises the amount of energy required to provide mobility services to building users.  Zero energy building design decisions based on partial evaluation and quantification approaches might result in an increased energy demand at different or multiple scales of the built environment. Indeed, recent studies have demonstrated that embodied and transport energy demands account for more than half of the total annual energy demand of residential buildings built based on zero energy criteria. Current zero energy building frameworks, tools and policies therefore may overlook more than ~80% of the total net energy balance annually.  The original contribution of this thesis is an integrated multi-scale zero energy building framework which has the capacity to gauge the relative effectiveness towards the deployment of zero energy residential buildings and neighbourhoods. This framework takes into account energy requirements and CO₂ emissions at the building scale, i.e. the embodied energy and operation energy demands, and at the city scale, i.e. the embodied energy of related transport modes including infrastructure and the transport operational energy demand of its users. This framework is implemented through the development of a quantification methodology which allows the analysis and evaluation of energy demand and CO₂ emissions pertaining to the deployment of zero energy residential buildings and districts. A case study, located in Auckland, New Zealand is used to verify, validate and investigate the potential of the developed framework.  Results confirm that each of the building (embodied and operational) and transport (embodied and operational) energy requirements represent a very significant share of the annual overall energy demand and associated CO₂ emissions of zero energy buildings. Consequently, rather than the respect of achieving a net zero energy building balance at the building scale, the research has revealed that it is more important, above all, to minimise building user-related and transportation energy demand at the city scale and maximise renewable energy production coupled with efficiency improvements at grid level. The application of the developed evaluation framework will enable building designers, urban planners, researchers and policy makers to deliver effective multi-scale zero energy building strategies which will ultimately contribute to reducing the overall environmental impact of the built environment today.</p>


2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


2021 ◽  
Vol 13 (12) ◽  
pp. 6753
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison

As the population of urban areas continues to grow, and construction of multi-unit developments surges in response, building energy use demand has increased accordingly and solutions are needed to offset electricity used from the grid. Renewable energy systems in the form of microgrids, and grid-connected solar PV-storage are considered primary solutions for powering residential developments. The primary objectives for commissioning such systems include significant electricity cost reductions and carbon emissions abatement. Despite the proliferation of renewables, the uptake of solar and battery storage systems in communities and multi-residential buildings are less researched in the literature, and many uncertainties remain in terms of providing an optimal solution. This literature review uses the rapid review technique, an industry and societal issue-based version of the systematic literature review, to identify the case for microgrids for multi-residential buildings and communities. The study describes the rapid review methodology in detail and discusses and examines the configurations and methodologies for microgrids.


Sign in / Sign up

Export Citation Format

Share Document