scholarly journals Overheating Risk and Energy Demand of Nordic Old and New Apartment Buildings during Average and Extreme Weather Conditions under a Changing Climate

2021 ◽  
Vol 11 (9) ◽  
pp. 3972
Author(s):  
Azin Velashjerdi Farahani ◽  
Juha Jokisalo ◽  
Natalia Korhonen ◽  
Kirsti Jylhä ◽  
Kimmo Ruosteenoja ◽  
...  

The global average air temperature is increasing as a manifestation of climate change and more intense and frequent heatwaves are expected to be associated with this rise worldwide, including northern Europe. Summertime indoor conditions in residential buildings and the health of occupants are influenced by climate change, particularly if no mechanical cooling is used. The energy use of buildings contributes to climate change through greenhouse gas emissions. It is, therefore, necessary to analyze the effects of climate change on the overheating risk and energy demand of residential buildings and to assess the efficiency of various measures to alleviate the overheating. In this study, simulations of dynamic energy and indoor conditions in a new and an old apartment building are performed using two climate scenarios for southern Finland, one for average and the other for extreme weather conditions in 2050. The evaluated measures against overheating included orientations, blinds, site shading, window properties, openable windows, the split cooling unit, and the ventilation cooling and ventilation boost. In both buildings, the overheating risk is high in the current and projected future average climate and, in particular, during exceptionally hot summers. The indoor conditions are occasionally even injurious for the health of occupants. The openable windows and ventilation cooling with ventilation boost were effective in improving the indoor conditions, during both current and future average and extreme weather conditions. However, the split cooling unit installed in the living room was the only studied solution able to completely prevent overheating in all the spaces with a fairly small amount of extra energy usage.

2014 ◽  
Vol 899 ◽  
pp. 440-445
Author(s):  
Sára Hrabovszky-Horváth

Changes in climate have various impacts on the built environment: e.g. the building design and the materials together with the operation and the maintenance. Therefore, it is extremely important to account for the future weather conditions during both the design of new buildings and the renovation of existing buildings. According to the Hungarian meteorological researches as a consequence of the global warming the climate of Hungary is going to become warmer and drier as well as the number and the intensity of the extreme weather events is expected to grow. One of the main directions of actions in the Climate Change Strategy is the adaptation to the changing circumstances, the improvement of the adaptive capacity of the built environment. In this study, the prefabricated reinforced concrete large-panel residential buildings are analysed: a bottom-up methodology was developed based on typological approach to assess the vulnerability of the ‘panel buildings’ to climate change by analysing the extreme weather events. After assessing the sensitivity and the adaptive capacity of the determined building types, their vulnerability to the increased number of windstorms and extreme rainfalls was estimated and the influence of their refurbishment was analysed.


2021 ◽  
Vol 13 (12) ◽  
pp. 6791
Author(s):  
Luka Pajek ◽  
Mitja Košir

Climate change is expected to expose the locked-in overheating risk concerning bioclimatic buildings adapted to a specific past climate state. The study aims to find energy-efficient building designs which are most resilient to overheating and increased cooling energy demands that will result from ongoing climate change. Therefore, a comprehensive parametric study of various passive building design measures was implemented, simulating the energy use of each combination for a temperate climate of Ljubljana, Slovenia. The approach to overheating vulnerability assessment was devised and applied using the increase in cooling energy demand as a performance indicator. The results showed that a B1 heating energy efficiency class according to the Slovenian Energy Performance Certificate classification was the highest attainable using the selected passive design parameters, while the energy demand for heating is projected to decrease over time. In contrast, the energy use for cooling is in general projected to increase. Furthermore, it was found that, in building models with higher heating energy use, low overheating vulnerability is easier to achieve. However, in models with high heating energy efficiency, very high overheating vulnerability is not expected. Accordingly, buildings should be designed for current heating energy efficiency and low vulnerability to future overheating. The paper shows a novel approach to bioclimatic building design with global warming adaptation integrated into the design process. It delivers recommendations for the energy-efficient, robust bioclimatic design of residential buildings in the Central European context, which are intended to guide designers and policymakers towards a resilient and sustainable built environment.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


2020 ◽  
Vol 9 (3) ◽  
pp. 27-43
Author(s):  
Nikola Fabris

AbstractFighting climate change is one of the biggest challenges in the 21st century. Climate change that leads to global warming has been increasingly visible in our environment. Extreme weather conditions such as hurricanes, floods, and droughts have been escalating and their acceleration can be expected in the future. They cause changes in sea levels, epidemics, large fires, etc. Increasingly, we are witnessing minor or major damage caused by these extreme weather conditions. Numerous studies have proven that climate change has negative impact on economic growth and prosperity. However, this paper starts from the premise that in addition to unequivocally identified threats, climate change also creates opportunities.The paper reaches a conclusion that climate change can adversely affect balance sheets of financial institutions. Therefore, climate change is a source of financial risk and thus a part of the mandate of central banks and supervisors in preserving financial stability. This type of risk has not been given enough attention by either supervisors or financial institutions over the past period. This paper develops a model for managing financial risks as a result of climate change.


2020 ◽  
Vol 12 (3) ◽  
pp. 435-452 ◽  
Author(s):  
Nadine Fleischhut ◽  
Stefan M. Herzog ◽  
Ralph Hertwig

AbstractAs climate change unfolds, extreme weather events are on the rise worldwide. According to experts, extreme weather risks already outrank those of terrorism and migration in likelihood and impact. But how well does the public understand weather risks and forecast uncertainty and thus grasp the amplified weather risks that climate change poses for the future? In a nationally representative survey (N = 1004; Germany), we tested the public’s weather literacy and awareness of climate change using 62 factual questions. Many respondents misjudged important weather risks (e.g., they were unaware that UV radiation can be higher under patchy cloud cover than on a cloudless day) and struggled to connect weather conditions to their impacts (e.g., they overestimated the distance to a thunderstorm). Most misinterpreted a probabilistic forecast deterministically, yet they strongly underestimated the uncertainty of deterministic forecasts. Respondents with higher weather literacy obtained weather information more often and spent more time outside but were not more educated. Those better informed about climate change were only slightly more weather literate. Overall, the public does not seem well equipped to anticipate weather risks in the here and now and may thus also fail to fully grasp what climate change implies for the future. These deficits in weather literacy highlight the need for impact forecasts that translate what the weather may be into what the weather may do and for transparent communication of uncertainty to the public. Boosting weather literacy may help to improve the public’s understanding of weather and climate change risks, thereby fostering informed decisions and mitigation support.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2516 ◽  
Author(s):  
Alex Gonzalez Caceres

Dwellings built between 1945 and 1980 have the largest energy demand in the EU, which by 2009 represented 70% of the final energy use in buildings. A great portion of these dwellings have not been retrofitted and most of them were not built with any energy efficiency measures, since most of the energy regulations were implemented after the oil crisis in the 70s. To face this issue several actions were taken in the EU, among these, the implementation of Energy Performance Certification, which includes a Recommendation List of Measures (RLMs) to retrofit the property. The main objective of this study is to identify the weaknesses of the RLMs and to suggest changes to improve the quality and impact of this feature. The results indicate that to retrofit an existing building, the RLMs lack information for decision-making. The study suggests important barriers to overcome for achieving potential energy reductions in existing residential buildings, highlighting improvements to the recommendation content and its implementation.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4954
Author(s):  
Mohammad AlHashmi ◽  
Gyan Chhipi-Shrestha ◽  
Kh Md. Nahiduzzaman ◽  
Kasun Hewage ◽  
Rehan Sadiq

Rapid population growth has led to significant demand for residential buildings around the world. Consequently, there is a growing energy demand associated with increased greenhouse gas (GHG) emissions. The residential building energy demand in arid countries such as Saudi Arabia is supplied with fossil fuel. The existing consumption pattern of fossil fuels in Saudi Arabia is less sustainable due to the depletion of fossil fuel resources and resulting environmental impacts. Buildings built in hot and arid climatic conditions demand high energy for creating habitable indoor environments. Enormous energy is required to maintain a cool temperature in hot regions. Moreover, climate change may have different impacts on hot climatic regions and affect building energy use differently. This means that different building interventions may be required to improve the performance of building energy performance in these geographical regions, thereby reducing the emissions of GHGs. In this study, this framework has been applied to Saudi Arabia, a hot and arid country. This research proposes a community–government partnership framework for developing low-carbon energy in residential buildings. This study focuses on both the operational energy demand and a cost-benefit analysis of energy use in the selected geographical regions for the next 30 years (i.e., 2050). The proposed framework primarily consists of four stages: (1) data collection on energy use (2020 to 2050); (2) setting a GHG emissions reduction target; (3) a building intervention approach by the community by considering cost, energy, and GHG emissions using the Technique for Order of Performance by Similarity to the Ideal Solution (TOPSIS) to select the best combinations in each geographical region conducting 180 simulations; and (4) a clean energy approach by the government using grey relational analysis (GRA) to select the best clean energy system on the grid. The clean energy approach selected six different renewable power generation systems (i.e., PV array, wind turbine, hybrid system) with two storage systems (i.e., battery bank and a combination of electrolyte, fuel cell, and hydrogen tank storage). This approach is designed to identify the best clean energy systems in five geographical regions with thirty scenario analyses to define renewable energy-economy benefits. This framework informs through many engineering tools such as residential building energy analysis, renewable energy analysis, multi-criteria decision analysis (MCDA) techniques, and cost-benefit analysis. Integration between these engineering tools with the set of energy policies and public initiatives is designed to achieve further directives in the effort to reach greater efficiency while downsizing residential energy demands. The results of this paper propose that a certain level of cooperation is required between the community and the government in terms of financial investments and the best combinations of retrofits and clean energy measures. Thus, retrofits and clean energy measures can help save carbon emissions (enhancing the energy performance of buildings) and decrease associated GHG emissions, which can help policy makers to achieve low-carbon emission communities.


Omni-Akuatika ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 49
Author(s):  
Rani Hafsaridewi ◽  
Hikmah Hikmah ◽  
Armen Zulham ◽  
Permana Ari Soejarwo ◽  
Bayu Vita Indah Yanti

Factors influencing fishers’ lives are climate change and extreme change in local weather. Climate change and extreme weather conditions are expected to affect marine fisheries’ productivity and modify fish distribution because of changes in water temperature, ocean currents, and other oceanic conditions. Both are issues faced by fishers in Natuna. The purpose of this study was to identify climate and weather changes in the research location, investigate the socio-economic effects, and analyse fishers’ adaptability patterns in relation to climate change. The method used in this study includes surveys, questionnaires, in-depth interviews, and focus group discussions. The results reveal climate change, and extreme weather affects the socio-economic dynamics of fishers in the Natuna Islands. The socio-economic dynamics as fishers’ resilience towards extreme climate are done by adjusting the number of workers and workforce, adjusting the size of fishing boats/ships, adjusting the composition of fishing gears, and changing fishing grounds. Keywords: Resilience, fishermen, climate change, Natuna, South China Sea


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 96
Author(s):  
Len Rijvers ◽  
Camilo Rindt ◽  
Corry de Keizer

Photovoltaic-thermal (PVT) collectors are hybrid solar collectors that convert solar and ambient energy into thermal and electrical energy. Integrated PVT-HP, in which PVT collectors are combined with a heat pump, offers an efficient and renewable option to replace conventional fossil fuel-based energy systems in residential buildings. Currently, system concepts in which the selection, design and control of the components are aligned towards the system performance are lacking. The development of a system model enables the comparison of a variety of system parameters and system designs, informed decision making based on the energetic performance and the market diffusion of PVT-HP systems. This contribution presents a simulation model of a PVT-HP system. By means of numerical simulations, with simulation program TRNSYS, the energetic performance of a PVT-HP system and the system components are investigated. It is shown that the PVT-HP can cover the annual energy demand of a residential building. The corresponding Seasonal Performance Factor (SPF) is equal to 3.6. Furthermore, the effect of varying weather conditions, occupancy and building orientations on the performance of the reference system is analyzed. The SPF for the investigated scenarios varies between 3.0 and 3.9. Lastly, two system parameters, the PVT collector area, and the PVT collector type are varied as an initial step in the optimization of the system performance. To sum up, the presented PVT-HP model is suitable for dynamic system simulation and the exploration of the system concepts. The simulation study shows that a PVT-HP system can cover the annual energy demand of a residential building. Lastly, parametric variations showcase the optimization potential of PVT-HP systems.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 642
Author(s):  
Mark Kyeredey Ansah ◽  
Xi Chen ◽  
Hongxing Yang

Reducing the lifecycle energy use of buildings with renewable energy applications has become critical given the urgent need to decarbonize the building sector. Multi-objective optimizations have been widely applied to reduce the operational energy use of buildings, but limited studies concern the embodied or whole lifecycle energy use. Consequently, there are issues such as sub-optimal design solutions and unclear correlation between embodied and operational energy in the current building energy assessment. To address these gaps, this study integrates a multi-objective optimization method with building energy simulation and lifecycle assessment (LCA) to explore the optimal configuration of different building envelopes from a lifecycle perspective. Major contributions of the study include the integrated optimization which reflects the dynamics of the whole lifecycle energy use. Insights from the study reveal the optimal configuration of PV and composite building façades for different regions in sub-Saharan Africa. The lifecycle energy use for the optimized building design resulted in 24.59, 33.33, and 36.93% energy savings in Ghana, Burkina Faso, and Nigeria, respectively. Additionally, PV power generation can efficiently cover over 90% of the total building energy demand. This study provides valuable insights for building designers in sub-Saharan Africa and similar areas that minimize lifecycle energy demand.


Sign in / Sign up

Export Citation Format

Share Document