scholarly journals Evaluation of Damage Limit State for RC Frame Based on FE Modeling

Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Stefanus Adi Kristiawan ◽  
Isyana Ratna Hapsari ◽  
Edy Purwanto ◽  
Marwahyudi Marwahyudi

Many damage limit states have been defined to characterize the extent of damages occurred in RC frame. Some of the damage limit states are defined by models that relate the limit states with the control points. Both control points and the limit state are expressed in term of response quantities. This research aims to evaluate the validity of such models by identifying the defined damage limit state with the corresponding damage based on FE modeling. The FE modeling provides a direct link between the damage and the response quantities. This link can be exploited as a basis for the evaluation. Based on the evaluation, this study proposed modified damage limit states. The response quantities with its corresponding progressive damage from FE simulation will also be used to inspect whether damage that can be expected to occur in the model structure is within the range estimated by the code based approach (CBA) damage limit state. Finally, fragility curves are constructed to assess the probability of the expected damage in the model structure under Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) scenarios. Utilizing the proposed damage limit states, the most probable damage in the structure falls in the category of slight if an earthquake at a level of DBE or MCE strikes the structure. However, at MCE level the probability of moderate damage attains 35%, or an increase by 23% compared to the DBE level.

2011 ◽  
Vol 27 (4) ◽  
pp. 971-996 ◽  
Author(s):  
Özgür Avşar ◽  
Ahmet Yakut ◽  
Alp Caner

This study focuses on the development of analytical fragility curves for the ordinary highway bridges constructed after the 1990s. Four major bridge classes were employed based on skew angle, number of columns per bent, and span number (only multispan bridges). Nonlinear response-history analyses (NRHA) were conducted for each bridge sample using a detailed 3-D analytical model subjected to earthquake ground motions of varying seismic intensities. A component-based approach that uses several engineering demand parameters was employed to determine the seismic response of critical bridge components. Corresponding damage limit states were defined either in terms of member capacities or excessive bearing displacements. Lognormal fragility curves were obtained by curve fitting the point estimates of the probability of exceeding each specified damage limit state for each major bridge class. Bridges with larger skew angles or single-column bents were found to be the most seismically vulnerable.


2016 ◽  
Vol 20 (8) ◽  
pp. 1210-1222 ◽  
Author(s):  
Zhiliang Cao ◽  
Hao Wang ◽  
Tong Guo

A novel self-centering prestressed concrete pier with external energy dissipators has been developed to realize seismic resilient performance and enhanced corrosion-resisting property. Self-centering capacity of the pier is provided by the unbonded post-tensioned tendons and damage is mostly concentrated on the replaceable dissipators. To investigate the seismic behavior of the proposed pier, a detailed analytical model considering interface opening and dissipator deformation was developed and verified through existing cyclic load tests. Based on the proposed model, a prototype reinforced concrete pier and a self-centering prestressed concrete pier with similar backbone curves are designed, and fragility analyses are conducted on the two piers through incremental dynamic analysis. One maximum drift-based performance limit state (i.e. collapse prevention) and two residual drift-based performance limit states (i.e. emergent usage and reconstruction) are defined for seismic capacity evaluation. Fragility curves indicate that the self-centering prestressed concrete pier has a slightly higher peak drift demand owing to its inferior dissipating capacity as compared with the reinforced concrete pier, while sustains a much lower residual drift demand due to its inherent self-centering characteristic.


2012 ◽  
Vol 28 (2) ◽  
pp. 759-794 ◽  
Author(s):  
Nicola Tarque ◽  
Helen Crowley ◽  
Rui Pinho ◽  
Humberto Varum

The seismic vulnerability of single-story adobe dwellings located in Cusco, Peru, is studied based on a mechanics-based procedure, which considers the analysis of in-plane and out-of-plane failure mechanisms of walls. The capacity of each dwelling is expressed as a function of its displacement capacity and period of vibration and is evaluated for different limit states to damage. The seismic demand has been obtained from several displacement response spectral shapes. From the comparison of the capacity with the demand, probabilities of limit state exceedance have been obtained for different PGA values. The results indicate that fragility curves in terms of PGA are strongly influenced by the response spectrum shape; however, this is not the case for the derivation of fragility curves in terms of limit state spectral displacement. Finally, fragility curves for dwellings located in Pisco, Peru, were computed and the probabilities of limit state exceedance were compared with the data obtained from the 2007 Peruvian earthquake.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Iman Mansouri ◽  
Jong Wan Hu ◽  
Kazem Shakeri ◽  
Shahrokh Shahbazi ◽  
Bahareh Nouri

Designer engineers have always the serious challenge regarding the choice of the kind of structures to use in the areas with significant seismic activities. Development of fragility curve provides an opportunity for designers to select a structure that will have the least fragility. This paper presents an investigation into the seismic vulnerability of both steel and reinforced concrete (RC) moment frames using fragility curves obtained by HAZUS and statistical methodologies. Fragility curves are employed for several probability parameters. Fragility curves are used to assess several probability parameters. Furthermore, it examines whether the probability of the exceedence of the damage limit state is reduced as expected. Nonlinear dynamic analyses of five-, eight-, and twelve-story frames are carried out using Perform 3D. The definition of damage states is based on the descriptions provided by HAZUS, which gives the limit states and the associated interstory drift limits for structures. The fragility curves show that the HAZUS procedure reduces probability of damage, and this reduction is higher for RC frames. Generally, the RC frames have higher fragility compared to steel frames.


2019 ◽  
Vol 35 (1) ◽  
pp. 211-231 ◽  
Author(s):  
Rocio Segura ◽  
Carl Bernier ◽  
Ricardo Monteiro ◽  
Patrick Paultre

In recent years, probabilistic methods, such as fragility analysis, have emerged as reliable tools for the seismic assessment of dam-type structures. These methods require the selection of a representative suite of ground motion records, resulting in the need for a ground motion selection method that includes all the relevant ground motion parameters in the fragility analysis of this type of structure. This article presents the development of up-to-date fragility curves for the sliding limit states of gravity dams in Eastern Canada using a record selection method based on the generalized conditional intensity measure approach. These fragility functions are then combined with the recently developed regional hazard data to evaluate the annual risk, which is measured in terms of the unconditional probability of limit state exceedance. The proposed methodology is applied to a case study dam in northeastern Canada, whose fragility is assessed through comparison with previous studies and current safety guidelines. It is observed that the more accurate procedure proposed herein produces less conservative fragility estimates for the case study dam.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
A. Ravi Kiran ◽  
G. R. Reddy ◽  
M. K. Agrawal

Abstract A procedure is described for risk-based seismic performance assessment of pressurized piping systems considering ratcheting. The procedure is demonstrated on a carbon steel piping system considered for OECD-NEA benchmark exercise on quantification of seismic margins. Initially, fragility analysis of the piping system is carried out by considering variability in damping and frequency. Variation in damping is obtained from the statistical analysis of the damping values observed in earlier experiments on piping systems and components. The variation in ground motion is considered by using 20 strong motion records of the intraplate region. Floor motion of a typical reactor building of a nuclear power plant under these actual earthquake records is evaluated and applied to the piping system. The performance evaluation of the piping system in terms of ratcheting is carried out using a numerical approach, which was earlier validated with shake table ratcheting tests on piping components and systems. Three limit states representing performance levels of the piping system under seismic load are considered for fragility evaluation. For each limit state, probability of exceedance at different levels of floor motion is evaluated to generate a fragility curve. Subsequently, the fragility curves of the piping systems are convoluted with hazardous curves for a typical site to obtain the risk in terms of annual probability of occurrence of the performance limits.


2021 ◽  
Author(s):  
Viviana Iris Novelli ◽  
Raffaele De Risi ◽  
Ignasio Ngoma ◽  
Innocent Kafodya ◽  
Panos Kloukinas ◽  
...  

AbstractMalawi is located within the southern branch of the active East African Rift System, where earthquakes of moment magnitude (Mw) 7.0 or greater can occur along major faults. The majority of dwellings in the country are non-engineered unreinforced masonry constructions, built by local artisans with little input from engineers. These constructions are highly vulnerable to seismic events due to poor-quality materials and lack of construction detailing. This study presents a new methodology to assess the seismic fragility curves of typical dwellings located in the Central and Southern Malawi. On-site inspections of buildings are carried out to assess geometrical and structural features of 646 façades, and an experimental campaign is performed to characterise the mechanical properties of local construction materials. The collected data allow the identification of different building typologies in terms of quality of materials and construction techniques. The critical failure modes for each of the inspected façade at their ultimate limit state are evaluated analytically. Damage limit states are defined and adopted to derive simplified Static Push-Over (SPO) curves, transformed into incremental dynamic analysis (IDA) curves by using SPO2IDA. The IDA curves are then used to obtain fragility curves for the specific damage limit states. The fragility curves presented herein are the first to be calculated for these building typologies, based on local data, and unfortunately, they show that buildings in Malawi are far more vulnerable to earthquakes than estimated from previously available international reference data. The fragility curves developed in this study may prove useful for assessing the seismic risk of these building typologies in Malawi and other East African countries.


2019 ◽  
Vol 5 (4) ◽  
pp. 796-809
Author(s):  
Farzad Mirzaie Aminian ◽  
Ehsan Khojastehfar ◽  
Hamid Ghanbari

Seismic fragility curves measure induced levels of structural damage against strong ground motions of earthquakes, probabilistically. These curves play an important role in seismic performance assessment, seismic risk analysis and making rational decisions regarding seismic risk management of structures. It has been demonstrated that the calculated fragility curves of structures are changed while the structures are excited by near-field strong ground motions in comparison with far-field ones. The objective of this paper is to evaluate the extents of modification for various performance levels and variety of structural heights. To achieve this goal, Incremental Dynamic Analysis (IDA) method is applied to calculate seismic fragility curves. To investigate the effects of earthquake characteristics, two categories of strong ground motions are assumed through IDA method, i.e. near and far-field sets. To study the extent of modification for various heights of structures, 4 – 6 and 10 stories moment-resisting concrete frames are considered as case studies.  Furthermore, to study the importance of involving near-field strong ground motions in seismic performance assessment of structures, the damage levels are considered as the renowned structural performance levels (i.e. Immediate Occupancy, Life Safety, Collapse Prevention and Sidesway Collapse). Achieved results show that the fragility curve of low-rise frame (i.e. 4-story case study) for IO limit state presents more probability of damage applying near-fault sets in comparison with far-fault set. Investigating fragility curves of the other performance levels (i.e. LS, CP and Collapse) and the higher frames, a straightforward conclusion, regarding probability of damage. To achieve the rational results for the higher frames, mean annual frequency of exceedance (MAFE) and probability of exceeding limit states in 50 years are calculated. MAFE is defined as the integration of structural fragility curve over seismic hazard curve. According to the achieved results for 6-story frame, if the structure is excited by near-field strong ground motions the probability of exceedance for LS, CP and collapse limit states in 50 years will be increased up to 11%, 2.4%, 0.7% and 0.4% respectively, comparing with the calculated probabilities while far-field strong ground motions are applied. On the other hand, while the 10-story case study is excited by near-field strong ground motions, the exceedance probability values for mentioned limit states decreases up to 20%, 5%, 4% and 4%, respectively. Consequently, it can be concluded that the lower is the height of the structure, the more will be the increment of probability of damage in the near-field conditions. Furthermore, this increment is much more for IO limit state in comparison with other limit states. These facts can be applied as a precaution for seismic design of low-rise structures, while they are located at the vicinity of active faults.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 278
Author(s):  
Raihan Rahmat Rabi ◽  
Vincenzo Bianco ◽  
Giorgio Monti

In seismic risk estimation, among the different types of fragility curves used (judgement-based, mechanical, empirical/observational, hybrid), the mechanical ones have the twofold advantage of allowing a better control over the basic parameters and of representing a validation test of the consistency of empirical/observational ones. In this study, fragility curves of RC frames with column-driven failures are obtained from a simplified analytical pushover method implemented in a simple spreadsheet, thus allowing the user to perform a large number of analyses. More importantly, the proposed method introduces the concept that Limit States at the structural level are obtained consequent to the attainment of the same Limit States at the local level, in the columns’ sections. This avoids using additional criteria, such as interstorey drift thresholds. This simple analytical model allows for rapid development of fragility curves, for any Limit State, of different building typologies identified by a set of global quantities (number of storeys, story heights, number of spans and span lengths) and by a set of local quantities (element sizes, reinforcement, and material properties). It also allows for a straightforward treatment of the influence of the soil class on the fragility curves parameters, which is another critical issue addressed in this work that helps when interpreting some literature results using empirical/observational methods.


Sign in / Sign up

Export Citation Format

Share Document