scholarly journals Function-Based and Multi-Scale Approach to Green Roof Guidelines for Urban Sustainability Transitions: The Case of Bogota

Buildings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 151 ◽  
Author(s):  
R. Andrés Ibáñez Gutiérrez ◽  
Mónica Ramos-Mejía

A growing number of local green roof niches across the globe are transitioning into the mainstream domain. Guidelines are key to this process, as they define technological environments and set the criteria for best practices in a given socio-technical setting. Although the German Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL) cornerstone guidelines provided solid empirical ground and established technical parameters for the successful application of green roofs across continents, investigations about alternative green roof guidelines for emerging markets remain very scarce. The paper presents the inclusive approach followed by the Bogota Green Roof Guidelines, which were the result of a multi-actor participatory process that examined how to embrace a wide range of emerging green roof technologies and local adaptations while promoting quality of application at different scales, regardless of the system used, and despite the absence of local robust empirical data on performance parameters. As a result, Bogota’s Green Roof Guidelines incorporated ad hoc elements: (1) new definitions and taxonomy, (2) function-based contents, (3) multi-scale approach, and (4) performance scoping. These aspects are discussed to provide novel insights for the advancement of green infrastructure policies in diverse institutional settings aiming to promote quality and simultaneously support markets that make room for a wide variety of green infrastructure practices.

2020 ◽  
Author(s):  
Pierre-Antoine Versini ◽  
Auguste Gires ◽  
Ioulia Tchiguirinskaia ◽  
Daniel Schertzer

<p>Green roofs represent a market of several tens millions of m<sup>2</sup> implemented every year in Europe. They appear to be particularly efficient to reduce the potential impact of new and existing urban developments by making the city “greener” and more resilient to climate change. Indeed, they provide several ecosystem services, particularly in stormwater management, urban heat island attenuation, and biodiversity conservation. For these reasons, municipalities are implementing specific policies to promote a large diffusion of green roofs on their territory. Nevertheless, to optimize their performances through urban scales, green roofs spatial distribution should be analysed.</p><p>In order to study the current green roof implementation and to assess the relevancy of the related policies, a multi-scale analysis based on fractal theory as been conducted. Such analysis, widely used in geophysics, is particularly suitable to characterize spatial fields exhibiting strong heterogeneity over wide range of scales. This fractal analysis was performed here to characterize the spatial distribution of green roofs in several European cities (London, Amsterdam, Geneva, Lyon, Paris, Berlin, Frankfort, Copenhagen, Oslo…). These cities have been chosen because: (i) GIS database containing the location and geometry of implemented green roofs is available, (ii) they have implemented various kind of green roofs policies.</p><p>The results show that every studied city depicts similar behaviour with the definition of three distinct scaling regimes. The second regime (between 16/32 and 512/1024 m) characterizes not only single roofs but their distribution in space which is what we are interested in. The fractal dimension charactering this regime is the most variable, ranging from 0.50 to 1.35 and illustrates some different degrees of progress in urban greening. It has to be noticed that the more ambitious incentive measures (where monetary subsidies are proposed) correspond to the cities characterized by the highest fractal dimension. Nevertheless, as these policies are relatively recent, they cannot completely explain the current green roof distribution (architectural history has also to be mentioned).</p><p>The obtained results demonstrate some significant inconsistencies between political ambition and their in situ realization. They illustrate the necessity to better take into account the spatial distribution of green roof implementations in order to optimize their performances. To provide ecosystem services at large scales, green roofs have to be widely and relevantly implemented. Fractal analysis can be seen as innovative multi-scale approach to adjust policies for this purpose.</p><p>This work has been made thanks to ANR EVNATURB project (https://hmco.enpc.fr/portfolio-archive/evnaturb/) and the Academic Chair “Hydrology for Resilient Cities”, a partnership between Ecole des Ponts ParisTech and the Veolia group.</p>


2019 ◽  
Vol 28 (4) ◽  
pp. 632-640
Author(s):  
Anna Baryła ◽  
Agnieszka Bus ◽  
Agnieszka Karczmarczyk ◽  
Joanna Witkowska-Dobrev

Increasing urban populations raises a number of problems and risks that are strengthened by observed and projected climate change. An increase in green areas (so-called green infrastructure) has turned out to be an effective means of lowering temperature in the city. Green roofs can be one of the possible measures leading to achieving this aim. The aim of the study was the analysis of temperature changes of different roof surfaces (conventional roof, board, intensive roof substrate without plant cover, substrate covered with plants (shrubs). Studies on comparing the temperature between a conventional roof and green roofs were carried out in the period from April to September 2015 on the roof of the building of the Faculty of Modern Languages, University of Warsaw. The measurement was performed using the FLIR SC620 thermal imaging system. As a result of the tests, it was found that in the summer months the differences between the temperature of the green roof and the conventional roof amounted to a maximum of 31.3°C. The obtained results showed that the roof with vegetation can signifi cantly contribute to the mitigation of the urban heat island phenomenon in urban areas during summer periods.


2019 ◽  
Vol 28 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Ewa Burszta-Adamiak ◽  
Wiesław Fiałkiewicz

Nowadays green roofs play a key role in alleviating the negative effects of urbanization. Despite investors awareness of the advantages of green roofs, there are still some barriers that hinder investments on a large scale. As a result a financial and non-financial incentives are implemented. The review presented in this paper allowed to identify the most popular initiatives and to formulate recommendations for creating incentive supporting implementation of green roofs in urban areas.


2006 ◽  
Vol 1 (3) ◽  
pp. 148-168 ◽  
Author(s):  
Jennifer Strauss Hendricks ◽  
Meg Calkins

While green roof technologies are increasingly employed in Northern European countries, adoption is progressing at a much slower rate in the US. This manuscript discusses results of a survey that quantified knowledge, barriers, and perceived costs and benefits to use of green roof technology among a sample of architects and building owners in the Midwest. The survey also examined conditions that may encourage use of this technology among the respondents. Results show that many respondents do not fully recognize the economic or performance advantages offered by green roof technologies. The payback period for economic advantage is longer than owners are willing to consider. Both owners and architects possess a wide range of misconceptions about the performance advantages of green roofs. While green roof technology offers clear environmental advantages such as reduced stormwater runoff, increased habitat, and cooler temperatures that mitigate heat island effects, many building owner respondents either do not know about or value these advantages. This research quantified potential adopters' perceptions of an innovative technology and the survey results are interpreted and discussed within the conceptual framework of innovation diffusion literature. Strategies to hasten the adoption of green roof technology are suggested.


2010 ◽  
Vol 5 (3) ◽  
pp. 50-68 ◽  
Author(s):  
Anne Altor

Green roof technology and implementation are taking root in North America at an accelerating pace. Growing recognition of the benefits of green roofs and increasing interest in green infrastructure are leading to expansion of green roof technologies that have been in use for decades in Europe and elsewhere. While some regions have adopted the use of green roofs on a large scale, other areas are warming up to the concept more slowly. Large-scale implementation of green roofs has not yet occurred in Indiana, but a number of exemplary projects have been constructed, and there are signs that interest in the technology is increasing in the state. The purpose of this article is to provide an overview of green roof technology, analyze selected green roofs in Indiana, explore trends in the state, and address issues for future development of green roof technology in the region. A variety of green roofs were investigated throughout the state. Discussions were held with individuals involved in each project to obtain technical and logistical details of green roof design, installation, and performance.


2020 ◽  
Author(s):  
Kristian Förster ◽  
Daniel Westerholt ◽  
Lukas Bargel ◽  
Philipp Kraft ◽  
Gilbert Lösken

<p>Green infrastructure plays a key role in contemporary concepts to mitigate flooding in urban environments. Concepts like water sensitive cities, sponge cities, and water sensitive urban design aim to mimic features of the natural water cycle even in highly urbanized districts. For instance, green roofs – as a key element of green infrastructure – reduce runoff due to their storage capacity. Hence, evapotranspiration is also increased at the expense of runoff, which better matches the characteristics of the natural water cycle. In this presentation, we demonstrate the added value of green roofs for stormwater mitigation. First, a green roof test plot with a slope of zero degrees and dimensions of 20 m in length and 1 m in width is built under laboratory conditions. The vertical extent is 0.08 m filled with a homogeneous substrate layer with a 300 g m<sup>-2</sup> drainage mat below. The runoff leaving the green roof at one of the 1 m edges is collected in tanks, which allows to continuously monitor the outflow. The water level in the green roof is observed using cameras. In this physical experiment, a sprinkler system is set up in order to generate an artificial rainfall event that mimics a design storm with a rainfall volume of 27 l m<sup>-2</sup> in total falling within 15 minutes. This corresponds to a return period of 100 years at the experimental site in Hanover, Germany. A numerical model utilizing the open source Catchment Modelling Framework (CMF) is developed to represent the green roof in a physically based model representation, which solves the Darcy flow along a 1D numerical grid with a grid spacing of 0.2 m. The model captures the dynamics of the green roof’s hydrological response very well. The comparison of observed and modelled runoff time series, each with a temporal resolution of 1 minute, suggest a Nash-Sutcliffe model efficiency of 0.64. The root mean square error (RMSE) of modelled water levels in the green roof amounts to 1.2 cm. Both the physical experiment and the model suggest a runoff coefficient of 9% after 15 minutes. At present, we also focus on analyzing other configurations of green roofs with altered dimensions and slope (50 experiments in total with up to three repetitions each). These results highlight that (i) CMF represents the hydrology of the green roof with high accuracy, and (ii) green roofs are a very efficient measure of green infrastructure that helps to reduce runoff even for design storms well beyond return periods usually considered in urban drainage planning. This is especially relevant in the process of transforming grey to green infrastructure in the light of climate change adaptation.</p><p> </p>


2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Mark J. Nieuwenhuijsen

The health benefits of green space are well known, but the health effects of green infrastructure less so. Green infrastructure goes well beyond the presence of green space and refers more to a strategically planned network of natural and seminatural areas, with other environmental features designed and managed to deliver a wide range of ecosystem services and possibly to improve human health. In this narrative review, we found that small green infrastructure, such as green roofs and walls, has the potential to mitigate urban flooding, attenuate indoor temperatures and heat islands, improve air quality, and muffle noise, among other benefits, but these effects have not been linked directly to health. Larger green infrastructure has been associated with reduced temperatures, air pollution, and crimes and violence, but less so with health, although there some evidence suggests that it may be beneficial for health (e.g., good health, decreased mortality). Finally, parks and street trees show many health benefits, but it is not clear if they can always be considered green infrastructure. Expected final online publication date for the Annual Review of Public Health, Volume 42 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2016 ◽  
Vol 62 (1-2) ◽  
pp. 74-87 ◽  
Author(s):  
C. Nash ◽  
J. Clough ◽  
D. Gedge ◽  
R. Lindsay ◽  
D. Newport ◽  
...  

Cities dominated by impervious artificial surfaces can experience a multitude of negative environmental impacts. Restoration of green infrastructure has been identified as a mechanism for increasing urban resilience, enabling cities to transition towards sustainable futures in the face of climate-driven change. Building rooftops represent a viable space for integrating new green infrastructure into high-density urban areas. Urban rooftops also provide prime locations for photovoltaic (PV) systems. There is an increasing recognition that these two technologies can be combined to deliver reciprocal benefits in terms of energy efficiency and biodiversity targets. Scarcity of scientific evaluation of the interaction between PVs and green roofs means that the potential benefits are currently poorly understood. This study documents evidence from a biodiversity monitoring study of a substantial biosolar roof installed in the Queen Elizabeth Olympic Park. Vegetation and invertebrate communities were sampled and habitat structure measured in relation to habitat niches on the roof, including PV panels. Ninety-two plant species were recorded on the roof and variation in vegetation structure associated with proximity to PV panels was identified. Almost 50% of target invertebrate species collected were designated of conservation importance. Arthropod distribution varied in relation to habitat niches on the roof. The overall aim of the Main Press Centre building green roof design was to create a mosaic of habitats to enhance biodiversity, and the results of the study suggest that PV panels can contribute to niche diversity on a green roof. Further detailed study is required to fully characterise the effects of PV panel density on biodiversity.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1334
Author(s):  
Dominik Gößner ◽  
Milena Mohri ◽  
Justine Jasmin Krespach

Green roofs have proven to be a space-saving solution to mitigate peak temperatures and control floods in urban areas through evaporative cooling and storm water retention. To encourage a sustainable city design with large-scale green infrastructure networks, a better differentiation between the diverse existing green roof systems is needed. The aim of this study is to demonstrate differences among green roof systems based on comprehensive microclimatic measurements on four small experimental roofs and to assess differences in evapotranspiration with a partial least square regression. The results show that short-wave solar radiation, relative humidity and water availability are the most important drivers of evapotranspiration. The roof system with permanent water storage maintained significantly higher substrate moisture compared to the other roofs and produced peak evapotranspiration rates of 4.88 mm d−1. The highest total evapo-transpiration of 526 mm from April to September was recorded for the roof system with the thickest substrate layer and grass vegetation. In summer, the shallowest roof showed the highest substrate temperature and air temperature at vegetation level. These findings highlight the importance of specifying the characteristics of the various green roofs in order to turn them into useful planning tools for the design of climate-change-resilient cities.


2019 ◽  
Vol 86 ◽  
pp. 00026 ◽  
Author(s):  
Anna Baryła ◽  
Agnieszka Karczmarczyk ◽  
Agnieszka Bus ◽  
Edyta Hewelke

Increasing recognition is being given to the adaption of green roofs in urban areas to enhance the local ecosystem. Green roofs may bring several benefits to urban areas including flood mitigation Analysis of environmental factors affecting the outflow of green roofs is the subject of many studies. The work assessed how environmental factors moisture of structural layers and antecedent dry weather period influence the retention on two types of green roof substrates. The monitoring of environmental factors and amount of runoff was carried out on two models of green roofs covered by extensive vegetation (mosssedum-herbs) with substrates of an organic-mineral and mineral composition for 8 months. A statistical regression approach identified potential antecedent meteorological factors and moisture indicators of extensive green-roof retention. Continuous field monitoring data revealed the combined effects of rainfall depth and antecedent dry weather period to explain the measured stormwater retention under a moderate climate conditions regime. It is important to incorporate site-specific planning and assessment prior to green infrastructure design.


Sign in / Sign up

Export Citation Format

Share Document