Set storage to the rain – Experimental and model-based evidence in mitigating extreme rainfall excess with green roofs

Author(s):  
Kristian Förster ◽  
Daniel Westerholt ◽  
Lukas Bargel ◽  
Philipp Kraft ◽  
Gilbert Lösken

<p>Green infrastructure plays a key role in contemporary concepts to mitigate flooding in urban environments. Concepts like water sensitive cities, sponge cities, and water sensitive urban design aim to mimic features of the natural water cycle even in highly urbanized districts. For instance, green roofs – as a key element of green infrastructure – reduce runoff due to their storage capacity. Hence, evapotranspiration is also increased at the expense of runoff, which better matches the characteristics of the natural water cycle. In this presentation, we demonstrate the added value of green roofs for stormwater mitigation. First, a green roof test plot with a slope of zero degrees and dimensions of 20 m in length and 1 m in width is built under laboratory conditions. The vertical extent is 0.08 m filled with a homogeneous substrate layer with a 300 g m<sup>-2</sup> drainage mat below. The runoff leaving the green roof at one of the 1 m edges is collected in tanks, which allows to continuously monitor the outflow. The water level in the green roof is observed using cameras. In this physical experiment, a sprinkler system is set up in order to generate an artificial rainfall event that mimics a design storm with a rainfall volume of 27 l m<sup>-2</sup> in total falling within 15 minutes. This corresponds to a return period of 100 years at the experimental site in Hanover, Germany. A numerical model utilizing the open source Catchment Modelling Framework (CMF) is developed to represent the green roof in a physically based model representation, which solves the Darcy flow along a 1D numerical grid with a grid spacing of 0.2 m. The model captures the dynamics of the green roof’s hydrological response very well. The comparison of observed and modelled runoff time series, each with a temporal resolution of 1 minute, suggest a Nash-Sutcliffe model efficiency of 0.64. The root mean square error (RMSE) of modelled water levels in the green roof amounts to 1.2 cm. Both the physical experiment and the model suggest a runoff coefficient of 9% after 15 minutes. At present, we also focus on analyzing other configurations of green roofs with altered dimensions and slope (50 experiments in total with up to three repetitions each). These results highlight that (i) CMF represents the hydrology of the green roof with high accuracy, and (ii) green roofs are a very efficient measure of green infrastructure that helps to reduce runoff even for design storms well beyond return periods usually considered in urban drainage planning. This is especially relevant in the process of transforming grey to green infrastructure in the light of climate change adaptation.</p><p> </p>

2019 ◽  
Vol 28 (4) ◽  
pp. 632-640
Author(s):  
Anna Baryła ◽  
Agnieszka Bus ◽  
Agnieszka Karczmarczyk ◽  
Joanna Witkowska-Dobrev

Increasing urban populations raises a number of problems and risks that are strengthened by observed and projected climate change. An increase in green areas (so-called green infrastructure) has turned out to be an effective means of lowering temperature in the city. Green roofs can be one of the possible measures leading to achieving this aim. The aim of the study was the analysis of temperature changes of different roof surfaces (conventional roof, board, intensive roof substrate without plant cover, substrate covered with plants (shrubs). Studies on comparing the temperature between a conventional roof and green roofs were carried out in the period from April to September 2015 on the roof of the building of the Faculty of Modern Languages, University of Warsaw. The measurement was performed using the FLIR SC620 thermal imaging system. As a result of the tests, it was found that in the summer months the differences between the temperature of the green roof and the conventional roof amounted to a maximum of 31.3°C. The obtained results showed that the roof with vegetation can signifi cantly contribute to the mitigation of the urban heat island phenomenon in urban areas during summer periods.


2019 ◽  
Vol 28 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Ewa Burszta-Adamiak ◽  
Wiesław Fiałkiewicz

Nowadays green roofs play a key role in alleviating the negative effects of urbanization. Despite investors awareness of the advantages of green roofs, there are still some barriers that hinder investments on a large scale. As a result a financial and non-financial incentives are implemented. The review presented in this paper allowed to identify the most popular initiatives and to formulate recommendations for creating incentive supporting implementation of green roofs in urban areas.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1368 ◽  
Author(s):  
Monica Moroni ◽  
Michele Porti ◽  
Patrizia Piro

The combination of an appropriate design and careful management of green infrastructures may contribute to mitigate flooding (stormwater quantity) and pollutant discharges (stormwater quality) into receiving water bodies and to coping with other extreme climate impacts (such as temperature regime) on a long-term basis and water cycle variability. The vegetation health state ensures the green infrastructure’s effectiveness. Due to their remarkable spatial and spectral resolution, hyperspectral sensing devices appear to be the most suited for green infrastructure vegetation monitoring according to the peculiar spectral features that vegetation exhibits. In particular, vegetation health-state detection is feasible due to the modifications the typical vegetation spectral signature undergoes when abnormalities are present. This paper presents a ground spectroscopy monitoring survey of the green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. The spectroradiometer, placed on a fixed stand, was used to identify stress conditions of vegetation located in areas where drought could affect the plant health state. Broadband vegetation indices were employed for this purpose. For the test case presented, data acquired agreed well with direct observations on the ground. The analyses carried out showed the remarkable performances of the broadband indices Red Difference Vegetation Index (Red DVI), Simple Ratio (SR) and Triangular Vegetation Index (TVI) in highlighting the vegetation health state and encouraged the design of a remote-controlled platform for monitoring purposes.


2010 ◽  
Vol 5 (3) ◽  
pp. 50-68 ◽  
Author(s):  
Anne Altor

Green roof technology and implementation are taking root in North America at an accelerating pace. Growing recognition of the benefits of green roofs and increasing interest in green infrastructure are leading to expansion of green roof technologies that have been in use for decades in Europe and elsewhere. While some regions have adopted the use of green roofs on a large scale, other areas are warming up to the concept more slowly. Large-scale implementation of green roofs has not yet occurred in Indiana, but a number of exemplary projects have been constructed, and there are signs that interest in the technology is increasing in the state. The purpose of this article is to provide an overview of green roof technology, analyze selected green roofs in Indiana, explore trends in the state, and address issues for future development of green roof technology in the region. A variety of green roofs were investigated throughout the state. Discussions were held with individuals involved in each project to obtain technical and logistical details of green roof design, installation, and performance.


Buildings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 151 ◽  
Author(s):  
R. Andrés Ibáñez Gutiérrez ◽  
Mónica Ramos-Mejía

A growing number of local green roof niches across the globe are transitioning into the mainstream domain. Guidelines are key to this process, as they define technological environments and set the criteria for best practices in a given socio-technical setting. Although the German Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL) cornerstone guidelines provided solid empirical ground and established technical parameters for the successful application of green roofs across continents, investigations about alternative green roof guidelines for emerging markets remain very scarce. The paper presents the inclusive approach followed by the Bogota Green Roof Guidelines, which were the result of a multi-actor participatory process that examined how to embrace a wide range of emerging green roof technologies and local adaptations while promoting quality of application at different scales, regardless of the system used, and despite the absence of local robust empirical data on performance parameters. As a result, Bogota’s Green Roof Guidelines incorporated ad hoc elements: (1) new definitions and taxonomy, (2) function-based contents, (3) multi-scale approach, and (4) performance scoping. These aspects are discussed to provide novel insights for the advancement of green infrastructure policies in diverse institutional settings aiming to promote quality and simultaneously support markets that make room for a wide variety of green infrastructure practices.


2016 ◽  
Vol 62 (1-2) ◽  
pp. 74-87 ◽  
Author(s):  
C. Nash ◽  
J. Clough ◽  
D. Gedge ◽  
R. Lindsay ◽  
D. Newport ◽  
...  

Cities dominated by impervious artificial surfaces can experience a multitude of negative environmental impacts. Restoration of green infrastructure has been identified as a mechanism for increasing urban resilience, enabling cities to transition towards sustainable futures in the face of climate-driven change. Building rooftops represent a viable space for integrating new green infrastructure into high-density urban areas. Urban rooftops also provide prime locations for photovoltaic (PV) systems. There is an increasing recognition that these two technologies can be combined to deliver reciprocal benefits in terms of energy efficiency and biodiversity targets. Scarcity of scientific evaluation of the interaction between PVs and green roofs means that the potential benefits are currently poorly understood. This study documents evidence from a biodiversity monitoring study of a substantial biosolar roof installed in the Queen Elizabeth Olympic Park. Vegetation and invertebrate communities were sampled and habitat structure measured in relation to habitat niches on the roof, including PV panels. Ninety-two plant species were recorded on the roof and variation in vegetation structure associated with proximity to PV panels was identified. Almost 50% of target invertebrate species collected were designated of conservation importance. Arthropod distribution varied in relation to habitat niches on the roof. The overall aim of the Main Press Centre building green roof design was to create a mosaic of habitats to enhance biodiversity, and the results of the study suggest that PV panels can contribute to niche diversity on a green roof. Further detailed study is required to fully characterise the effects of PV panel density on biodiversity.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1334
Author(s):  
Dominik Gößner ◽  
Milena Mohri ◽  
Justine Jasmin Krespach

Green roofs have proven to be a space-saving solution to mitigate peak temperatures and control floods in urban areas through evaporative cooling and storm water retention. To encourage a sustainable city design with large-scale green infrastructure networks, a better differentiation between the diverse existing green roof systems is needed. The aim of this study is to demonstrate differences among green roof systems based on comprehensive microclimatic measurements on four small experimental roofs and to assess differences in evapotranspiration with a partial least square regression. The results show that short-wave solar radiation, relative humidity and water availability are the most important drivers of evapotranspiration. The roof system with permanent water storage maintained significantly higher substrate moisture compared to the other roofs and produced peak evapotranspiration rates of 4.88 mm d−1. The highest total evapo-transpiration of 526 mm from April to September was recorded for the roof system with the thickest substrate layer and grass vegetation. In summer, the shallowest roof showed the highest substrate temperature and air temperature at vegetation level. These findings highlight the importance of specifying the characteristics of the various green roofs in order to turn them into useful planning tools for the design of climate-change-resilient cities.


2019 ◽  
Vol 86 ◽  
pp. 00026 ◽  
Author(s):  
Anna Baryła ◽  
Agnieszka Karczmarczyk ◽  
Agnieszka Bus ◽  
Edyta Hewelke

Increasing recognition is being given to the adaption of green roofs in urban areas to enhance the local ecosystem. Green roofs may bring several benefits to urban areas including flood mitigation Analysis of environmental factors affecting the outflow of green roofs is the subject of many studies. The work assessed how environmental factors moisture of structural layers and antecedent dry weather period influence the retention on two types of green roof substrates. The monitoring of environmental factors and amount of runoff was carried out on two models of green roofs covered by extensive vegetation (mosssedum-herbs) with substrates of an organic-mineral and mineral composition for 8 months. A statistical regression approach identified potential antecedent meteorological factors and moisture indicators of extensive green-roof retention. Continuous field monitoring data revealed the combined effects of rainfall depth and antecedent dry weather period to explain the measured stormwater retention under a moderate climate conditions regime. It is important to incorporate site-specific planning and assessment prior to green infrastructure design.


2020 ◽  
Vol 51 (2) ◽  
pp. 339-350
Author(s):  
Lotte Askeland Schärer ◽  
Jan Ove Busklein ◽  
Edvard Sivertsen ◽  
Tone M. Muthanna

Abstract Climate change combined with urbanization increases the performance demand on urban drainage systems. Green roofs are one of the most used green infrastructure measures to alleviate the pressure on the urban drainage system through the detention and retention of runoff. The rational method with the runoff coefficient (C) is one of the most commonly used design tools for stormwater design in Norway. This method relies on a runoff coefficient being available for green roofs, which is typically not the case. This paper compares laboratory and experimental field studies to investigate runoff coefficients from different types of detention-based roofs. The methodology described in the German ‘FLL Guideline’, one of the world's most commonly used green roof standards, was used to measure the runoff coefficients for the different components making up a typical green roof. The contribution from each layer is reflected in the runoff coefficients. The runoff coefficients from the field experiments were calculated using observed precipitation and runoff from existing green roofs in Oslo, Trondheim, Sandnes, and Bergen, Norway. Events that had a cumulative precipitation comparable to the laboratory events, but longer durations, were selected. These events gave significantly lower and varying runoff coefficients, clearly demonstrating the limitation of choosing a suitable runoff coefficient for a given roof. However, laboratory experiments are important in understanding the underlying flow processes in the different layers in a detention-based roof.


2021 ◽  
Author(s):  
Tim Busker ◽  
Toon Haer ◽  
Jeroen Aerts ◽  
Hans de Moel ◽  
Bart van den Hurk ◽  
...  

<p>Research shows that climate change will increase the intensity and frequency of extreme summer precipitation events as well as heatwaves, over the coming decades (IPCC, 2014; Russo et al., 2015). Moreover, the impact of heat waves will likely increase in cities due to the urban heat island (UHI) effect (Li & Bou-Zeid, 2013). Green infrastructure (e.g. parks, green roofs, etc.) is generally seen as an effective adaptation measure to address these challenges. The city of Amsterdam has started a project (RESILIO, https://resilio.amsterdam/en/smart-blue-green-roofs) to investigate a new innovation in this field: smart blue-green roofs. These roofs have the advantage over green roofs in that they have an extra water retention layer underneath the green layer, which can be used to buffer peak rainfall or as a capillary irrigation system for the plant layer in hot and dry summer days. The smart valve on the roof can be opened when extreme precipitation is predicted to capture extreme rainfall, but it is yet unknown if this forecast-based drainage provides added value to optimize the operation of the valve.</p><p>Therefore, this study evaluates the performance of European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble precipitation forecasts to trigger drainage from blue-green roofs. A conceptual hydrological model of a blue-green roof in Amsterdam is set up to simulate its operation for the last 5 years. Three drainage strategies can be triggered according to different probabilities of precipitation (30<sup>th</sup>, 60<sup>th</sup> and 90<sup>th</sup> percentile) based on ECMWF data. Each strategy is evaluated on how it leads to (1) minimize the overflow during peak rainfall into the city drainage system, and (2) to maintain high water levels during hot summer days to boost evaporative cooling. Preliminary results show that some early drainage strategies result in capturing 50-100% of rainfall (>10mm/hr), while enough water is available on most hot summer days (T>25℃) to ensure atmospheric cooling through plant transpiration. This implies that relatively low-resolution (18km) precipitation forecasts from ECMWF are valuable for anticipatory water management on a very local scale. These results also show the high potential of blue-green roofs for urban climate adaptation, and the need for anticipatory management of these nature-based solutions. The next research steps will include a city-scale roof suitability analysis that will reveal the value of this solution when implemented at most flat roofs in the city of Amsterdam.</p><p>IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.</p><p>Li, D., & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology. https://doi.org/10.1175/JAMC-D-13-02.1</p><p>Russo, S., Sillmann, J., & Fischer, E. M. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters. https://doi.org/10.1088/1748-9326/10/12/124003</p>


Sign in / Sign up

Export Citation Format

Share Document