scholarly journals Premade Nanoparticle Films for the Synthesis of Vertically Aligned Carbon Nanotubes

2021 ◽  
Vol 7 (4) ◽  
pp. 79
Author(s):  
Abdul Hoque ◽  
Ahamed Ullah ◽  
Beth S. Guiton ◽  
Noe T. Alvarez

Carbon nanotubes (CNTs) offer unique properties that have the potential to address multiple issues in industry and material sciences. Although many synthesis methods have been developed, it remains difficult to control CNT characteristics. Here, with the goal of achieving such control, we report a bottom-up process for CNT synthesis in which monolayers of premade aluminum oxide (Al2O3) and iron oxide (Fe3O4) nanoparticles were anchored on a flat silicon oxide (SiO2) substrate. The nanoparticle dispersion and monolayer assembly of the oleic-acid-stabilized Al2O3 nanoparticles were achieved using 11-phosphonoundecanoic acid as a bifunctional linker, with the phosphonate group binding to the SiO2 substrate and the terminal carboxylate group binding to the nanoparticles. Subsequently, an Fe3O4 monolayer was formed over the Al2O3 layer using the same approach. The assembled Al2O3 and Fe3O4 nanoparticle monolayers acted as a catalyst support and catalyst, respectively, for the growth of vertically aligned CNTs. The CNTs were successfully synthesized using a conventional atmospheric pressure-chemical vapor deposition method with acetylene as the carbon precursor. Thus, these nanoparticle films provide a facile and inexpensive approach for producing homogenous CNTs.

2006 ◽  
Vol 326-328 ◽  
pp. 333-336
Author(s):  
Yun Young Bang ◽  
Tae Jin Je ◽  
Kyung Hyun Whang ◽  
Won Seok Chang

Chemical vapor deposition (CVD) is one of the various synthesis methods that have been employed for CNT growth. In particular, Ren et al reported that large areas of vertically aligned multi-wall carbon nanotubes could be grown using plasma enhanced chemical vapor deposition (PECVD). In the present study, we synthesized aligned CNT arrays using a direct current (dc) PECVD system. The synthesis of CNTs requires a metal catalyst layer, etchant gas, and a carbon source. In this study, the substrate consisted of Si wafers with 10, 30, and 50 nm Ni-sputtered film. Ammonia (NH3) and acetylene (C2H2) were used as the etchant gases and carbon source, respectively. NH3 pretreatment was processed using a flow rate of 180 sccm for 10 min. CNTs were grown on pretreated substrates at 30% C2H2:NH3 flow ratios for 10 min. Carbon nanotubes with diameters ranging from 60 to 80 nanometers and lengths of about 2.7 μm were obtained. Vertical alignment of the carbon nanotubes was observed by FE-SEM.


2007 ◽  
Vol 1057 ◽  
Author(s):  
Yaser Abdi ◽  
Shams Mohajerzadeh ◽  
Kokab Baghbani ◽  
Sara Paydavosi ◽  
Ebrahim Asl Soleimani

ABSTRACTWe have grown vertically-aligned carbon nanotubes on (100) silicon substrates by means of a plasma enhanced chemical vapor deposition method. The growth of CNTs is achieved by a mixture of hydrogen and acetylene gases in a CVD reactor and a 2-5nm thick nickel is used as the seed for the growth. Following the growth of nanotubes on the silicon substrates, they are covered by a titanium-oxide layer and then the substrate is placed back into the original chamber to expose to a hydrogen plasma. Depending on the hydrogenation step, the nickel seed layer, which is placed on the tip side of the original nanotube, is expanded. The subsequent process in the same reactor leads to the growth of carbon nanotubes in a branched manner. Scanning electron microscopy has been used to investigate the results of such tree-like nanostructures.


2018 ◽  
Vol 937 ◽  
pp. 9-16
Author(s):  
Ewelina Pabjańczyk-Wlazło ◽  
Yuma Suzuki ◽  
Jungo Onoda ◽  
Tetsuhide Shimizu ◽  
Ming Yang

Vertically aligned carbon nanotubes (VACNTs or CNTs) were synthetized by thermal chemical vapor deposition method on the Si/SiO2 substrates, using Al/Fe as catalyst. In the present study, the influence of the annealing duration and synthesis time on the length, grow rate and quality of the VACNTs according to 9 different regimes was investigated. The outcomes of the study was observed using scanning electron microscope, atomic force microscopy and Raman spectroscopy analysis was utilized in order to evaluate the quality of the obtained nanotubes. Results have shown that the length of the VACNTs increases with the rise of annealing time, however only to a certain degree, after which the deterioration of the nanotubes occurs and the reduction of their length is noticeable.


Sign in / Sign up

Export Citation Format

Share Document